April  2013, 6(4): 1065-1076. doi: 10.3934/dcdss.2013.6.1065

Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential

1. 

Institut de Recherche en Mathmatique et Physique

2. 

Universit Catholique de Louvain, chemin du Cyclotron, 2

3. 

B-1348 Louvain-la-Neuve

Received  August 2011 Published  December 2012

T-periodic solutions of systems of difference equations of the form\begin{eqnarray*}\Delta \phi[\Delta q(n-1)] = \nabla_q F[n,q(n)] + h(n) \quad (n \in \mathbb{Z})\end{eqnarray*}where $\phi = \nabla \Phi$, with $\Phi$ strictly convex, is a homeomorphism of $\mathbb{R}^N$ onto the ball $B_a \subset \mathbb{R}^N$, or a homeomorphism of the ball $B_{a} \subset \mathbb{R}^N$ onto $\mathbb{R}^N$, are considered when $F(n,u)$ is periodic in the $u_j$. The approach is variational.
Citation: Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065
References:
[1]

J. Difference Equations Applic., 14 (2008), 1099-1118. doi: 10.1080/10236190802332290.  Google Scholar

[2]

J. Math. Anal. Appl., 330 (2007), 1002-1015. doi: 10.1016/j.jmaa.2006.07.104.  Google Scholar

[3]

Dynamics Reported, 3 (1994), 1-24. Google Scholar

[4]

Ann. Inst. Henri-Poincaré. Anal. non Linéaire, 5 (1989), 259-281.  Google Scholar

[5]

in "Variational Problems" (eds. H. Berestycki, J. M. Coron and I. Ekeland) Birkhäuser, Basel, (1990), 95-104.  Google Scholar

[6]

J. London Math. Soc. (2), 68 (2003), 419-430. doi: 10.1112/S0024610703004563.  Google Scholar

[7]

Nonlinear Anal., 55 (2003), 969-983. doi: 10.1016/j.na.2003.07.019.  Google Scholar

[8]

Springer, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9]

J. Differential Equations, 82 (1989), 372-385. doi: 10.1016/0022-0396(89)90139-3.  Google Scholar

[10]

Le Matematiche, 65 (2010), 97-107.  Google Scholar

[11]

Discrete Continuous Dynamical Systems, 32 (2012), 89-111. doi: 10.3934/dcds.2012.32.4015.  Google Scholar

[12]

Nonlinear Anal., 75 (2012), 4672-4687. doi: 10.1016/j.na.2011.11.018.  Google Scholar

[13]

Springer, New York, 1989.  Google Scholar

[14]

Commun. Contemp. Math., 13 (2011), 863-883. doi: 10.1142/S0219199711004488.  Google Scholar

[15]

CBMS 65, American Math. Soc., Providence RI, 1986.  Google Scholar

[16]

Trans. Amer. Math. Soc., 310 (1988), 303-311. doi: 10.2307/2001123.  Google Scholar

[17]

Manuscripta Math., 7 (1972), 387-411.  Google Scholar

[18]

Gordon and Breach, New York, 1969.  Google Scholar

[19]

Nonlinear Anal., 15 (1990), 725-739. doi: 10.1016/0362-546X(90)90089-Y.  Google Scholar

[20]

Discrete Continuous Dynamical Systems, 15 (2006), 939-950. doi: 10.3934/dcds.2006.15.939.  Google Scholar

[21]

ANZIAM J., 47 (2005), 89-102. doi: 10.1017/S1446181100009792.  Google Scholar

show all references

References:
[1]

J. Difference Equations Applic., 14 (2008), 1099-1118. doi: 10.1080/10236190802332290.  Google Scholar

[2]

J. Math. Anal. Appl., 330 (2007), 1002-1015. doi: 10.1016/j.jmaa.2006.07.104.  Google Scholar

[3]

Dynamics Reported, 3 (1994), 1-24. Google Scholar

[4]

Ann. Inst. Henri-Poincaré. Anal. non Linéaire, 5 (1989), 259-281.  Google Scholar

[5]

in "Variational Problems" (eds. H. Berestycki, J. M. Coron and I. Ekeland) Birkhäuser, Basel, (1990), 95-104.  Google Scholar

[6]

J. London Math. Soc. (2), 68 (2003), 419-430. doi: 10.1112/S0024610703004563.  Google Scholar

[7]

Nonlinear Anal., 55 (2003), 969-983. doi: 10.1016/j.na.2003.07.019.  Google Scholar

[8]

Springer, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9]

J. Differential Equations, 82 (1989), 372-385. doi: 10.1016/0022-0396(89)90139-3.  Google Scholar

[10]

Le Matematiche, 65 (2010), 97-107.  Google Scholar

[11]

Discrete Continuous Dynamical Systems, 32 (2012), 89-111. doi: 10.3934/dcds.2012.32.4015.  Google Scholar

[12]

Nonlinear Anal., 75 (2012), 4672-4687. doi: 10.1016/j.na.2011.11.018.  Google Scholar

[13]

Springer, New York, 1989.  Google Scholar

[14]

Commun. Contemp. Math., 13 (2011), 863-883. doi: 10.1142/S0219199711004488.  Google Scholar

[15]

CBMS 65, American Math. Soc., Providence RI, 1986.  Google Scholar

[16]

Trans. Amer. Math. Soc., 310 (1988), 303-311. doi: 10.2307/2001123.  Google Scholar

[17]

Manuscripta Math., 7 (1972), 387-411.  Google Scholar

[18]

Gordon and Breach, New York, 1969.  Google Scholar

[19]

Nonlinear Anal., 15 (1990), 725-739. doi: 10.1016/0362-546X(90)90089-Y.  Google Scholar

[20]

Discrete Continuous Dynamical Systems, 15 (2006), 939-950. doi: 10.3934/dcds.2006.15.939.  Google Scholar

[21]

ANZIAM J., 47 (2005), 89-102. doi: 10.1017/S1446181100009792.  Google Scholar

[1]

J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141

[2]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[3]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[4]

Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015

[5]

Dmitry Treschev. Oscillator and thermostat. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1693-1712. doi: 10.3934/dcds.2010.28.1693

[6]

Xiying Sun, Qihuai Liu, Dingbian Qian, Na Zhao. Infinitely many subharmonic solutions for nonlinear equations with singular $ \phi $-Laplacian. Communications on Pure & Applied Analysis, 2020, 19 (1) : 279-292. doi: 10.3934/cpaa.20200015

[7]

János Karsai, John R. Graef. Attractivity properties of oscillator equations with superlinear damping. Conference Publications, 2005, 2005 (Special) : 497-504. doi: 10.3934/proc.2005.2005.497

[8]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[9]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[10]

Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082

[11]

John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533

[12]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

[13]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69

[14]

R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211

[15]

Małgorzata Migda, Ewa Schmeidel, Małgorzata Zdanowicz. Periodic solutions of a $2$-dimensional system of neutral difference equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 359-367. doi: 10.3934/dcdsb.2018024

[16]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[17]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[18]

Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775

[19]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[20]

Alexei Pokrovskii, Oleg Rasskazov, Daniela Visetti. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 943-970. doi: 10.3934/dcdsb.2007.8.943

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]