- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Topology and homoclinic trajectories of discrete dynamical systems
Effect of positive feedback on Devil's staircase input-output relationship
1. | Department of Applied Mathematics |
2. | University College, Cork |
References:
[1] | |
[2] | |
[3] |
The American Economic Review, 84 (1994), Papers and Proceedings of the Hundred and Sixth Annual Meeting of the American Economic Association, 406-411. |
[4] | |
[5] | |
[6] | |
[7] | |
[8] |
J. Math. Anal. Appl., 319 (2006), 94-109.
doi: 10.1016/j.jmaa.2006.02.060. |
[9] |
Springer, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[10] | |
[11] | |
[12] | |
[13] |
Chapter 2 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 61-72.
doi: 10.1137/1.9780898717860. |
[14] | |
[15] | |
[16] |
in "Enciclopedia of Complexity and Systems Science" (eds. C. Marchetti and R. A. Meyers), Springer, (2009), 5021-5037. |
[17] | |
[18] | |
[19] | |
[20] | |
[21] |
NoDEA Nonlinear Differential Equations Appl., 9 (2002), 93-115.
doi: 10.1007/s00030-002-8120-2. |
[22] |
Springer, 1989.
doi: 10.1007/978-3-642-61302-9. |
[23] | |
[24] |
Chapter 3 in "Singular Perturbations and Hysteresi" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 73-100.
doi: 10.1137/1.9780898717860.ch3. |
[25] |
Physica D, 241 (2012), 2010-2028.
doi: 10.1016/j.physd.2011.05.005. |
[26] |
Journal of Intelligent Material Systems and Structures, 19 (2008), 1411-1424. |
[27] | |
[28] |
Springer, 1991.
doi: 10.2172/6911694. |
[29] |
in "Advances in Condensed Matter and Statistical Physics" (eds. E. Korutcheva and R. Cuerno), Nova Science Publishers, New York, (2004), 263-286. |
[30] | |
[31] |
Mathematical Modelling of Natural Phenomena, 7 (2012), 1-30.
doi: 10.1051/mmnp/20127313. |
[32] |
Discrete and Continuous Dynamical Systems B, 11 (2009), 997-1018.
doi: 10.3934/dcdsb.2009.11.997. |
[33] | |
[34] |
Chapter 1 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 1-54. |
[35] |
NoDEA Nonlinear Differential Equations Appl., 6 (1999), 267-288.
doi: 10.1007/s000300050076. |
[36] | |
[37] | |
[38] | |
[39] |
in "The Science of Hysteresis, II" (eds. G. Bertotti and I. Mayergoyz), Elsevier, (2005), 107-168. |
[40] | |
[41] | |
[42] | |
[43] |
Proceedings of the National academy of Sci. of USA, 99 (2002), 5766-5771.
doi: 10.1073/pnas.082090499. |
show all references
References:
[1] | |
[2] | |
[3] |
The American Economic Review, 84 (1994), Papers and Proceedings of the Hundred and Sixth Annual Meeting of the American Economic Association, 406-411. |
[4] | |
[5] | |
[6] | |
[7] | |
[8] |
J. Math. Anal. Appl., 319 (2006), 94-109.
doi: 10.1016/j.jmaa.2006.02.060. |
[9] |
Springer, 1996.
doi: 10.1007/978-1-4612-4048-8. |
[10] | |
[11] | |
[12] | |
[13] |
Chapter 2 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 61-72.
doi: 10.1137/1.9780898717860. |
[14] | |
[15] | |
[16] |
in "Enciclopedia of Complexity and Systems Science" (eds. C. Marchetti and R. A. Meyers), Springer, (2009), 5021-5037. |
[17] | |
[18] | |
[19] | |
[20] | |
[21] |
NoDEA Nonlinear Differential Equations Appl., 9 (2002), 93-115.
doi: 10.1007/s00030-002-8120-2. |
[22] |
Springer, 1989.
doi: 10.1007/978-3-642-61302-9. |
[23] | |
[24] |
Chapter 3 in "Singular Perturbations and Hysteresi" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 73-100.
doi: 10.1137/1.9780898717860.ch3. |
[25] |
Physica D, 241 (2012), 2010-2028.
doi: 10.1016/j.physd.2011.05.005. |
[26] |
Journal of Intelligent Material Systems and Structures, 19 (2008), 1411-1424. |
[27] | |
[28] |
Springer, 1991.
doi: 10.2172/6911694. |
[29] |
in "Advances in Condensed Matter and Statistical Physics" (eds. E. Korutcheva and R. Cuerno), Nova Science Publishers, New York, (2004), 263-286. |
[30] | |
[31] |
Mathematical Modelling of Natural Phenomena, 7 (2012), 1-30.
doi: 10.1051/mmnp/20127313. |
[32] |
Discrete and Continuous Dynamical Systems B, 11 (2009), 997-1018.
doi: 10.3934/dcdsb.2009.11.997. |
[33] | |
[34] |
Chapter 1 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 1-54. |
[35] |
NoDEA Nonlinear Differential Equations Appl., 6 (1999), 267-288.
doi: 10.1007/s000300050076. |
[36] | |
[37] | |
[38] | |
[39] |
in "The Science of Hysteresis, II" (eds. G. Bertotti and I. Mayergoyz), Elsevier, (2005), 107-168. |
[40] | |
[41] | |
[42] | |
[43] |
Proceedings of the National academy of Sci. of USA, 99 (2002), 5766-5771.
doi: 10.1073/pnas.082090499. |
[1] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[2] |
Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101 |
[3] |
Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131 |
[4] |
Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215 |
[5] |
Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3051-3066. doi: 10.3934/dcdsb.2018299 |
[6] |
Yu Li, Kok Lay Teo, Shuhua Zhang. A new feedback form of open-loop Stackelberg strategy in a general linear-quadratic differential game. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022105 |
[7] |
Kasthurisamy Jothimani, Kalimuthu Kaliraj, Sumati Kumari Panda, Kotakkaran Sooppy Nisar, Chokkalingam Ravichandran. Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations and Control Theory, 2021, 10 (3) : 619-631. doi: 10.3934/eect.2020083 |
[8] |
Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 2. Periodic solutions. Conference Publications, 2011, 2011 (Special) : 941-952. doi: 10.3934/proc.2011.2011.941 |
[9] |
Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931 |
[10] |
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 |
[11] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[12] |
Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809 |
[13] |
Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237 |
[14] |
Hong Il Cho, Gang Uk Hwang. Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization. Journal of Industrial and Management Optimization, 2011, 7 (3) : 607-622. doi: 10.3934/jimo.2011.7.607 |
[15] |
Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003 |
[16] |
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355 |
[17] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
[18] |
Chun Liu, Jan-Eric Sulzbach. The Brinkman-Fourier system with ideal gas equilibrium. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 425-462. doi: 10.3934/dcds.2021123 |
[19] |
Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056 |
[20] |
Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]