August  2013, 6(4): 1095-1112. doi: 10.3934/dcdss.2013.6.1095

Effect of positive feedback on Devil's staircase input-output relationship

1. 

Department of Applied Mathematics

2. 

University College, Cork

Received  January 2011 Revised  February 2012 Published  December 2012

We consider emerging hysteresis behaviour in a closed loop systemthat includes a nonlinear link $f$ of the Devil's staircase (Cantorfunction) type and a positive feedback. This type of closed loopsarises naturally in analysis of networks where local ``negative''coupling of network elements is combined with ``positive'' couplingat the level of the mean-field interaction (in the limit case whenthe impact of each individual vertex is infinitesimal, while thenumber of vertices is growing). For the Cantor function $f$, takenas a model, and for a monotonically increasing input, we present thecorresponding output of the system explicitly, showing that theoutput is piecewise constant and has a finite number of equal jumps.We then discuss hysteresis loops of the system for genericnon-monotone inputs. The results are presented in the context of differential equations describingnonlinear control systems with almost immediate linear feedback, i.e., in the limit where the time of propagation of the signalthrough the feedback loop tends to zero.
Citation: Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095
References:
[1]

IEEE Control Systems Magazine, 29 (2009), 44-69.

[2]

Physica B, 403 (2008), 301-304.

[3]

The American Economic Review, 84 (1994), Papers and Proceedings of the Hundred and Sixth Annual Meeting of the American Economic Association, 406-411.

[4]

J. Phys. C: Solid State Phys., 16 (1983), 2497-2508.

[5]

J. Dynamics & Differential Equations, 24 (2012), 713-759.

[6]

IEEE Control System Magazine, 19 (1999), 111-117.

[7]

Environmental Modeling & Assessment, 16 (2011), 313-333.

[8]

J. Math. Anal. Appl., 319 (2006), 94-109. doi: 10.1016/j.jmaa.2006.02.060.

[9]

Springer, 1996. doi: 10.1007/978-1-4612-4048-8.

[10]

Physica A, 246 (1997), 407-418.

[11]

Oxford University Press, 2005.

[12]

J. Phys.: Conf. Ser., 55 (2006), 55-62.

[13]

Chapter 2 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 61-72. doi: 10.1137/1.9780898717860.

[14]

Physica B, 403 (2008), 231-236.

[15]

Nature Physics, 1 (2005), 13-14.

[16]

in "Enciclopedia of Complexity and Systems Science" (eds. C. Marchetti and R. A. Meyers), Springer, (2009), 5021-5037.

[17]

Sensors and Actuators A: Physical, 147 (2008), 127-136.

[18]

Westview Press, 2003.

[19]

Longmans, London, 1964.

[20]

Phys. Rev. B., 54 (1996), 18-21.

[21]

NoDEA Nonlinear Differential Equations Appl., 9 (2002), 93-115. doi: 10.1007/s00030-002-8120-2.

[22]

Springer, 1989. doi: 10.1007/978-3-642-61302-9.

[23]

Gakkotosho, Tokyo, 1996.

[24]

Chapter 3 in "Singular Perturbations and Hysteresi" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 73-100. doi: 10.1137/1.9780898717860.ch3.

[25]

Physica D, 241 (2012), 2010-2028. doi: 10.1016/j.physd.2011.05.005.

[26]

Journal of Intelligent Material Systems and Structures, 19 (2008), 1411-1424.

[27]

W. H. Freeman and Company, 1982.

[28]

Springer, 1991. doi: 10.2172/6911694.

[29]

in "Advances in Condensed Matter and Statistical Physics" (eds. E. Korutcheva and R. Cuerno), Nova Science Publishers, New York, (2004), 263-286.

[30]

Hydrol. Earth Syst. Sci., 11 (2007), 443-459.

[31]

Mathematical Modelling of Natural Phenomena, 7 (2012), 1-30. doi: 10.1051/mmnp/20127313.

[32]

Discrete and Continuous Dynamical Systems B, 11 (2009), 997-1018. doi: 10.3934/dcdsb.2009.11.997.

[33]

Functional Differential Equations, 6 (1999), 411-438.

[34]

Chapter 1 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 1-54.

[35]

NoDEA Nonlinear Differential Equations Appl., 6 (1999), 267-288. doi: 10.1007/s000300050076.

[36]

IEEE Trans. Power Deliv., 22 (2007), 919-929.

[37]

Phys. Rev Lett., 70 (1993), 3347.

[38]

Nature, 410 (2001), 242-250.

[39]

in "The Science of Hysteresis, II" (eds. G. Bertotti and I. Mayergoyz), Elsevier, (2005), 107-168.

[40]

Springer, 1998.

[41]

Syst. Synth. Biol., 1 (2007), 59-87.

[42]

Springer, 1994.

[43]

Proceedings of the National academy of Sci. of USA, 99 (2002), 5766-5771. doi: 10.1073/pnas.082090499.

show all references

References:
[1]

IEEE Control Systems Magazine, 29 (2009), 44-69.

[2]

Physica B, 403 (2008), 301-304.

[3]

The American Economic Review, 84 (1994), Papers and Proceedings of the Hundred and Sixth Annual Meeting of the American Economic Association, 406-411.

[4]

J. Phys. C: Solid State Phys., 16 (1983), 2497-2508.

[5]

J. Dynamics & Differential Equations, 24 (2012), 713-759.

[6]

IEEE Control System Magazine, 19 (1999), 111-117.

[7]

Environmental Modeling & Assessment, 16 (2011), 313-333.

[8]

J. Math. Anal. Appl., 319 (2006), 94-109. doi: 10.1016/j.jmaa.2006.02.060.

[9]

Springer, 1996. doi: 10.1007/978-1-4612-4048-8.

[10]

Physica A, 246 (1997), 407-418.

[11]

Oxford University Press, 2005.

[12]

J. Phys.: Conf. Ser., 55 (2006), 55-62.

[13]

Chapter 2 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 61-72. doi: 10.1137/1.9780898717860.

[14]

Physica B, 403 (2008), 231-236.

[15]

Nature Physics, 1 (2005), 13-14.

[16]

in "Enciclopedia of Complexity and Systems Science" (eds. C. Marchetti and R. A. Meyers), Springer, (2009), 5021-5037.

[17]

Sensors and Actuators A: Physical, 147 (2008), 127-136.

[18]

Westview Press, 2003.

[19]

Longmans, London, 1964.

[20]

Phys. Rev. B., 54 (1996), 18-21.

[21]

NoDEA Nonlinear Differential Equations Appl., 9 (2002), 93-115. doi: 10.1007/s00030-002-8120-2.

[22]

Springer, 1989. doi: 10.1007/978-3-642-61302-9.

[23]

Gakkotosho, Tokyo, 1996.

[24]

Chapter 3 in "Singular Perturbations and Hysteresi" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 73-100. doi: 10.1137/1.9780898717860.ch3.

[25]

Physica D, 241 (2012), 2010-2028. doi: 10.1016/j.physd.2011.05.005.

[26]

Journal of Intelligent Material Systems and Structures, 19 (2008), 1411-1424.

[27]

W. H. Freeman and Company, 1982.

[28]

Springer, 1991. doi: 10.2172/6911694.

[29]

in "Advances in Condensed Matter and Statistical Physics" (eds. E. Korutcheva and R. Cuerno), Nova Science Publishers, New York, (2004), 263-286.

[30]

Hydrol. Earth Syst. Sci., 11 (2007), 443-459.

[31]

Mathematical Modelling of Natural Phenomena, 7 (2012), 1-30. doi: 10.1051/mmnp/20127313.

[32]

Discrete and Continuous Dynamical Systems B, 11 (2009), 997-1018. doi: 10.3934/dcdsb.2009.11.997.

[33]

Functional Differential Equations, 6 (1999), 411-438.

[34]

Chapter 1 in "Singular Perturbations and Hysteresis" (eds. M. Mortell, R. E. O'Malley, A. Pokrovskii and V. Sobolev), SIAM, (2005), 1-54.

[35]

NoDEA Nonlinear Differential Equations Appl., 6 (1999), 267-288. doi: 10.1007/s000300050076.

[36]

IEEE Trans. Power Deliv., 22 (2007), 919-929.

[37]

Phys. Rev Lett., 70 (1993), 3347.

[38]

Nature, 410 (2001), 242-250.

[39]

in "The Science of Hysteresis, II" (eds. G. Bertotti and I. Mayergoyz), Elsevier, (2005), 107-168.

[40]

Springer, 1998.

[41]

Syst. Synth. Biol., 1 (2007), 59-87.

[42]

Springer, 1994.

[43]

Proceedings of the National academy of Sci. of USA, 99 (2002), 5766-5771. doi: 10.1073/pnas.082090499.

[1]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[2]

Pavel Krejčí. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 101-119. doi: 10.3934/dcdss.2013.6.101

[3]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[4]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[5]

Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3051-3066. doi: 10.3934/dcdsb.2018299

[6]

Yu Li, Kok Lay Teo, Shuhua Zhang. A new feedback form of open-loop Stackelberg strategy in a general linear-quadratic differential game. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022105

[7]

Kasthurisamy Jothimani, Kalimuthu Kaliraj, Sumati Kumari Panda, Kotakkaran Sooppy Nisar, Chokkalingam Ravichandran. Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations and Control Theory, 2021, 10 (3) : 619-631. doi: 10.3934/eect.2020083

[8]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 2. Periodic solutions. Conference Publications, 2011, 2011 (Special) : 941-952. doi: 10.3934/proc.2011.2011.941

[9]

Monica Lazzo, Paul G. Schmidt. Convergence versus periodicity in a single-loop positive-feedback system 1. Convergence to equilibrium. Conference Publications, 2011, 2011 (Special) : 931-940. doi: 10.3934/proc.2011.2011.931

[10]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[11]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[12]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[13]

Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237

[14]

Hong Il Cho, Gang Uk Hwang. Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization. Journal of Industrial and Management Optimization, 2011, 7 (3) : 607-622. doi: 10.3934/jimo.2011.7.607

[15]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[16]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[17]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[18]

Chun Liu, Jan-Eric Sulzbach. The Brinkman-Fourier system with ideal gas equilibrium. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 425-462. doi: 10.3934/dcds.2021123

[19]

Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056

[20]

Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]