October  2013, 6(5): 1139-1150. doi: 10.3934/dcdss.2013.6.1139

On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations

1. 

Department of Mathematics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, South Korea

Received  December 2011 Revised  November 2012 Published  March 2013

In this paper we briefly review recent results mostly by the author related to the blow-up problem of the 3D Euler equations and the Liouville type results in the various equations of the fluids.
Citation: Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139
References:
[1]

C. Bardos and É. S. Titi, Euler equations of incompressible ideal fluids,, Russian Math. Surveys, 62 (2007), 409. doi: 10.1070/RM2007v062n03ABEH004410. Google Scholar

[2]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[3]

D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345. Google Scholar

[4]

D. Chae, The Liouville type theorems for the steady Navier-Stokes equations and the self-similar Euler equations on $\mathbbR^3$,, preprint, (). Google Scholar

[5]

D. Chae, Conditions on the pressure for vanishing velocity in the incompressible fluid flows,, Comm. PDE, 37 (2012), 1445. Google Scholar

[6]

D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations,, Advances in Math., 228 (2011), 2855. doi: 10.1016/j.aim.2011.07.020. Google Scholar

[7]

D. Chae, On the self-similar solutions of the 3D Euler and the related equations,, Comm. Math. Phys., 305 (2011), 333. doi: 10.1007/s00220-011-1266-1. Google Scholar

[8]

D. Chae, On the Lagrangian dynamics of the axisymmetric 3D Euler equations,, J. Diff. Eqns., 249 (2010), 571. doi: 10.1016/j.jde.2010.03.012. Google Scholar

[9]

D. Chae, On the nonexistence of global weak solutions to the Navier-Stokes-Poisson equations in $\mathbbR^N$,, Comm. PDE, 35 (2010), 535. doi: 10.1080/03605300903473418. Google Scholar

[10]

D. Chae, On the generalized self-similar singularities for the Euler and the Navier-Stokes equations,, J. Funct. Anal., 258 (2010), 2865. doi: 10.1016/j.jfa.2010.02.006. Google Scholar

[11]

D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations,, Nonlinearity, 21 (2008), 2053. doi: 10.1088/0951-7715/21/9/007. Google Scholar

[12]

D. Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler equations,, Comm. Math. Phys., 273 (2007), 203. doi: 10.1007/s00220-007-0249-8. Google Scholar

[13]

D. Chae, Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, Math. Ann., 338 (2007), 435. doi: 10.1007/s00208-007-0082-6. Google Scholar

[14]

D. Chae, On the continuation principles for the Euler equations and the quasi-geostrophic equation,, J. Diff. Eqns., 227 (2006), 640. doi: 10.1016/j.jde.2005.12.013. Google Scholar

[15]

D. Chae, Incompressible Euler Equations: The blow-up problem and related results,, in, (2008), 1. doi: 10.1016/S1874-5717(08)00001-7. Google Scholar

[16]

D. Chae, On the well-posedness of the Euler equations in the Besov and Triebel-Lizorkin spaces,, Chae, (2001), 42. Google Scholar

[17]

D. Chae, K. Kang and J. Lee, Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, DCDS-A, 25 (2009), 1181. doi: 10.3934/dcds.2009.25.1181. Google Scholar

[18]

P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: Local theory,, J. Amer. Math. Soc., 14 (2001), 263. doi: 10.1090/S0894-0347-00-00364-7. Google Scholar

[19]

P. Constantin, On the Euler equations of incompressible fluids,, Bull. Amer. Math. Soc., 44 (2007), 603. doi: 10.1090/S0273-0979-07-01184-6. Google Scholar

[20]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potential singularity formulation in the 3-D Euler equations,, Comm. P.D.E., 21 (1996), 559. doi: 10.1080/03605309608821197. Google Scholar

[21]

P. Constantin, P. Lax and A. Majda, A simple one-dimensional model for the three dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715. doi: 10.1002/cpa.3160380605. Google Scholar

[22]

L. Euler, Principes généraux du mouvement des fluides,, Mémoires de l'Académie des Sciences de Berlin, 11 (1755), 274. Google Scholar

[23]

U. Frisch, T. Matsumoto and J. Bec, Singularities of Euler Flow? Not Out of the Blue!,, J. Stat. Phys., 113 (2003), 761. doi: 10.1023/A:1027308602344. Google Scholar

[24]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 39 (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar

[25]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297. doi: 10.1002/cpa.3160380304. Google Scholar

[26]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbbR^3$,, J. Funct. Anal., 9 (1972), 296. Google Scholar

[27]

R. M. Kerr, Vortex collapse and turbulence,, Fluid Dynamics Research, 36 (2005), 249. doi: 10.1016/j.fluiddyn.2004.09.003. Google Scholar

[28]

G. Koch, N. Nadirashvili, G. Seregin and V. Šverák, Liouville theorems for the Navier-Stokes equations and applications,, Acta Math., 203 (2009), 83. doi: 10.1007/s11511-009-0039-6. Google Scholar

[29]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations,, Comm. Math. Phys., 214 (2000), 191. doi: 10.1007/s002200000267. Google Scholar

[30]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations,, Math Z., 242 (2002), 251. doi: 10.1007/s002090100332. Google Scholar

[31]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[32]

A. Majda and A. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002). Google Scholar

[33]

J. Nečas, M. Ružička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations,, Acta Math., 176 (1996), 283. doi: 10.1007/BF02551584. Google Scholar

[34]

T.-P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates,, Arch. Rat. Mech. Anal., 143 (1998), 29. doi: 10.1007/s002050050099. Google Scholar

show all references

References:
[1]

C. Bardos and É. S. Titi, Euler equations of incompressible ideal fluids,, Russian Math. Surveys, 62 (2007), 409. doi: 10.1070/RM2007v062n03ABEH004410. Google Scholar

[2]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[3]

D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345. Google Scholar

[4]

D. Chae, The Liouville type theorems for the steady Navier-Stokes equations and the self-similar Euler equations on $\mathbbR^3$,, preprint, (). Google Scholar

[5]

D. Chae, Conditions on the pressure for vanishing velocity in the incompressible fluid flows,, Comm. PDE, 37 (2012), 1445. Google Scholar

[6]

D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations,, Advances in Math., 228 (2011), 2855. doi: 10.1016/j.aim.2011.07.020. Google Scholar

[7]

D. Chae, On the self-similar solutions of the 3D Euler and the related equations,, Comm. Math. Phys., 305 (2011), 333. doi: 10.1007/s00220-011-1266-1. Google Scholar

[8]

D. Chae, On the Lagrangian dynamics of the axisymmetric 3D Euler equations,, J. Diff. Eqns., 249 (2010), 571. doi: 10.1016/j.jde.2010.03.012. Google Scholar

[9]

D. Chae, On the nonexistence of global weak solutions to the Navier-Stokes-Poisson equations in $\mathbbR^N$,, Comm. PDE, 35 (2010), 535. doi: 10.1080/03605300903473418. Google Scholar

[10]

D. Chae, On the generalized self-similar singularities for the Euler and the Navier-Stokes equations,, J. Funct. Anal., 258 (2010), 2865. doi: 10.1016/j.jfa.2010.02.006. Google Scholar

[11]

D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations,, Nonlinearity, 21 (2008), 2053. doi: 10.1088/0951-7715/21/9/007. Google Scholar

[12]

D. Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler equations,, Comm. Math. Phys., 273 (2007), 203. doi: 10.1007/s00220-007-0249-8. Google Scholar

[13]

D. Chae, Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, Math. Ann., 338 (2007), 435. doi: 10.1007/s00208-007-0082-6. Google Scholar

[14]

D. Chae, On the continuation principles for the Euler equations and the quasi-geostrophic equation,, J. Diff. Eqns., 227 (2006), 640. doi: 10.1016/j.jde.2005.12.013. Google Scholar

[15]

D. Chae, Incompressible Euler Equations: The blow-up problem and related results,, in, (2008), 1. doi: 10.1016/S1874-5717(08)00001-7. Google Scholar

[16]

D. Chae, On the well-posedness of the Euler equations in the Besov and Triebel-Lizorkin spaces,, Chae, (2001), 42. Google Scholar

[17]

D. Chae, K. Kang and J. Lee, Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, DCDS-A, 25 (2009), 1181. doi: 10.3934/dcds.2009.25.1181. Google Scholar

[18]

P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: Local theory,, J. Amer. Math. Soc., 14 (2001), 263. doi: 10.1090/S0894-0347-00-00364-7. Google Scholar

[19]

P. Constantin, On the Euler equations of incompressible fluids,, Bull. Amer. Math. Soc., 44 (2007), 603. doi: 10.1090/S0273-0979-07-01184-6. Google Scholar

[20]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potential singularity formulation in the 3-D Euler equations,, Comm. P.D.E., 21 (1996), 559. doi: 10.1080/03605309608821197. Google Scholar

[21]

P. Constantin, P. Lax and A. Majda, A simple one-dimensional model for the three dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715. doi: 10.1002/cpa.3160380605. Google Scholar

[22]

L. Euler, Principes généraux du mouvement des fluides,, Mémoires de l'Académie des Sciences de Berlin, 11 (1755), 274. Google Scholar

[23]

U. Frisch, T. Matsumoto and J. Bec, Singularities of Euler Flow? Not Out of the Blue!,, J. Stat. Phys., 113 (2003), 761. doi: 10.1023/A:1027308602344. Google Scholar

[24]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 39 (1994). doi: 10.1007/978-1-4612-5364-8. Google Scholar

[25]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297. doi: 10.1002/cpa.3160380304. Google Scholar

[26]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbbR^3$,, J. Funct. Anal., 9 (1972), 296. Google Scholar

[27]

R. M. Kerr, Vortex collapse and turbulence,, Fluid Dynamics Research, 36 (2005), 249. doi: 10.1016/j.fluiddyn.2004.09.003. Google Scholar

[28]

G. Koch, N. Nadirashvili, G. Seregin and V. Šverák, Liouville theorems for the Navier-Stokes equations and applications,, Acta Math., 203 (2009), 83. doi: 10.1007/s11511-009-0039-6. Google Scholar

[29]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations,, Comm. Math. Phys., 214 (2000), 191. doi: 10.1007/s002200000267. Google Scholar

[30]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations,, Math Z., 242 (2002), 251. doi: 10.1007/s002090100332. Google Scholar

[31]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[32]

A. Majda and A. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002). Google Scholar

[33]

J. Nečas, M. Ružička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations,, Acta Math., 176 (1996), 283. doi: 10.1007/BF02551584. Google Scholar

[34]

T.-P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates,, Arch. Rat. Mech. Anal., 143 (1998), 29. doi: 10.1007/s002050050099. Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[3]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[4]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[5]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[6]

Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031

[7]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[8]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

[9]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[10]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[11]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[12]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[13]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[14]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[15]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[16]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[17]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[18]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[19]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[20]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]