October  2013, 6(5): 1139-1150. doi: 10.3934/dcdss.2013.6.1139

On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations

1. 

Department of Mathematics, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, South Korea

Received  December 2011 Revised  November 2012 Published  March 2013

In this paper we briefly review recent results mostly by the author related to the blow-up problem of the 3D Euler equations and the Liouville type results in the various equations of the fluids.
Citation: Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139
References:
[1]

C. Bardos and É. S. Titi, Euler equations of incompressible ideal fluids,, Russian Math. Surveys, 62 (2007), 409.  doi: 10.1070/RM2007v062n03ABEH004410.  Google Scholar

[2]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.   Google Scholar

[3]

D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345.   Google Scholar

[4]

D. Chae, The Liouville type theorems for the steady Navier-Stokes equations and the self-similar Euler equations on $\mathbbR^3$,, preprint, ().   Google Scholar

[5]

D. Chae, Conditions on the pressure for vanishing velocity in the incompressible fluid flows,, Comm. PDE, 37 (2012), 1445.   Google Scholar

[6]

D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations,, Advances in Math., 228 (2011), 2855.  doi: 10.1016/j.aim.2011.07.020.  Google Scholar

[7]

D. Chae, On the self-similar solutions of the 3D Euler and the related equations,, Comm. Math. Phys., 305 (2011), 333.  doi: 10.1007/s00220-011-1266-1.  Google Scholar

[8]

D. Chae, On the Lagrangian dynamics of the axisymmetric 3D Euler equations,, J. Diff. Eqns., 249 (2010), 571.  doi: 10.1016/j.jde.2010.03.012.  Google Scholar

[9]

D. Chae, On the nonexistence of global weak solutions to the Navier-Stokes-Poisson equations in $\mathbbR^N$,, Comm. PDE, 35 (2010), 535.  doi: 10.1080/03605300903473418.  Google Scholar

[10]

D. Chae, On the generalized self-similar singularities for the Euler and the Navier-Stokes equations,, J. Funct. Anal., 258 (2010), 2865.  doi: 10.1016/j.jfa.2010.02.006.  Google Scholar

[11]

D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations,, Nonlinearity, 21 (2008), 2053.  doi: 10.1088/0951-7715/21/9/007.  Google Scholar

[12]

D. Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler equations,, Comm. Math. Phys., 273 (2007), 203.  doi: 10.1007/s00220-007-0249-8.  Google Scholar

[13]

D. Chae, Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, Math. Ann., 338 (2007), 435.  doi: 10.1007/s00208-007-0082-6.  Google Scholar

[14]

D. Chae, On the continuation principles for the Euler equations and the quasi-geostrophic equation,, J. Diff. Eqns., 227 (2006), 640.  doi: 10.1016/j.jde.2005.12.013.  Google Scholar

[15]

D. Chae, Incompressible Euler Equations: The blow-up problem and related results,, in, (2008), 1.  doi: 10.1016/S1874-5717(08)00001-7.  Google Scholar

[16]

D. Chae, On the well-posedness of the Euler equations in the Besov and Triebel-Lizorkin spaces,, Chae, (2001), 42.   Google Scholar

[17]

D. Chae, K. Kang and J. Lee, Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, DCDS-A, 25 (2009), 1181.  doi: 10.3934/dcds.2009.25.1181.  Google Scholar

[18]

P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: Local theory,, J. Amer. Math. Soc., 14 (2001), 263.  doi: 10.1090/S0894-0347-00-00364-7.  Google Scholar

[19]

P. Constantin, On the Euler equations of incompressible fluids,, Bull. Amer. Math. Soc., 44 (2007), 603.  doi: 10.1090/S0273-0979-07-01184-6.  Google Scholar

[20]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potential singularity formulation in the 3-D Euler equations,, Comm. P.D.E., 21 (1996), 559.  doi: 10.1080/03605309608821197.  Google Scholar

[21]

P. Constantin, P. Lax and A. Majda, A simple one-dimensional model for the three dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715.  doi: 10.1002/cpa.3160380605.  Google Scholar

[22]

L. Euler, Principes généraux du mouvement des fluides,, Mémoires de l'Académie des Sciences de Berlin, 11 (1755), 274.   Google Scholar

[23]

U. Frisch, T. Matsumoto and J. Bec, Singularities of Euler Flow? Not Out of the Blue!,, J. Stat. Phys., 113 (2003), 761.  doi: 10.1023/A:1027308602344.  Google Scholar

[24]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 39 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[25]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297.  doi: 10.1002/cpa.3160380304.  Google Scholar

[26]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbbR^3$,, J. Funct. Anal., 9 (1972), 296.   Google Scholar

[27]

R. M. Kerr, Vortex collapse and turbulence,, Fluid Dynamics Research, 36 (2005), 249.  doi: 10.1016/j.fluiddyn.2004.09.003.  Google Scholar

[28]

G. Koch, N. Nadirashvili, G. Seregin and V. Šverák, Liouville theorems for the Navier-Stokes equations and applications,, Acta Math., 203 (2009), 83.  doi: 10.1007/s11511-009-0039-6.  Google Scholar

[29]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations,, Comm. Math. Phys., 214 (2000), 191.  doi: 10.1007/s002200000267.  Google Scholar

[30]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations,, Math Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[31]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[32]

A. Majda and A. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002).   Google Scholar

[33]

J. Nečas, M. Ružička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations,, Acta Math., 176 (1996), 283.  doi: 10.1007/BF02551584.  Google Scholar

[34]

T.-P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates,, Arch. Rat. Mech. Anal., 143 (1998), 29.  doi: 10.1007/s002050050099.  Google Scholar

show all references

References:
[1]

C. Bardos and É. S. Titi, Euler equations of incompressible ideal fluids,, Russian Math. Surveys, 62 (2007), 409.  doi: 10.1070/RM2007v062n03ABEH004410.  Google Scholar

[2]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Comm. Math. Phys., 94 (1984), 61.   Google Scholar

[3]

D. Chae, Remarks on the Liouville type results for the compressible Navier-Stokes equations in $\mathbbR^N$,, Nonlinearity, 25 (2012), 1345.   Google Scholar

[4]

D. Chae, The Liouville type theorems for the steady Navier-Stokes equations and the self-similar Euler equations on $\mathbbR^3$,, preprint, ().   Google Scholar

[5]

D. Chae, Conditions on the pressure for vanishing velocity in the incompressible fluid flows,, Comm. PDE, 37 (2012), 1445.   Google Scholar

[6]

D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations,, Advances in Math., 228 (2011), 2855.  doi: 10.1016/j.aim.2011.07.020.  Google Scholar

[7]

D. Chae, On the self-similar solutions of the 3D Euler and the related equations,, Comm. Math. Phys., 305 (2011), 333.  doi: 10.1007/s00220-011-1266-1.  Google Scholar

[8]

D. Chae, On the Lagrangian dynamics of the axisymmetric 3D Euler equations,, J. Diff. Eqns., 249 (2010), 571.  doi: 10.1016/j.jde.2010.03.012.  Google Scholar

[9]

D. Chae, On the nonexistence of global weak solutions to the Navier-Stokes-Poisson equations in $\mathbbR^N$,, Comm. PDE, 35 (2010), 535.  doi: 10.1080/03605300903473418.  Google Scholar

[10]

D. Chae, On the generalized self-similar singularities for the Euler and the Navier-Stokes equations,, J. Funct. Anal., 258 (2010), 2865.  doi: 10.1016/j.jfa.2010.02.006.  Google Scholar

[11]

D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations,, Nonlinearity, 21 (2008), 2053.  doi: 10.1088/0951-7715/21/9/007.  Google Scholar

[12]

D. Chae, Nonexistence of self-similar singularities for the 3D incompressible Euler equations,, Comm. Math. Phys., 273 (2007), 203.  doi: 10.1007/s00220-007-0249-8.  Google Scholar

[13]

D. Chae, Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, Math. Ann., 338 (2007), 435.  doi: 10.1007/s00208-007-0082-6.  Google Scholar

[14]

D. Chae, On the continuation principles for the Euler equations and the quasi-geostrophic equation,, J. Diff. Eqns., 227 (2006), 640.  doi: 10.1016/j.jde.2005.12.013.  Google Scholar

[15]

D. Chae, Incompressible Euler Equations: The blow-up problem and related results,, in, (2008), 1.  doi: 10.1016/S1874-5717(08)00001-7.  Google Scholar

[16]

D. Chae, On the well-posedness of the Euler equations in the Besov and Triebel-Lizorkin spaces,, Chae, (2001), 42.   Google Scholar

[17]

D. Chae, K. Kang and J. Lee, Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations,, DCDS-A, 25 (2009), 1181.  doi: 10.3934/dcds.2009.25.1181.  Google Scholar

[18]

P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: Local theory,, J. Amer. Math. Soc., 14 (2001), 263.  doi: 10.1090/S0894-0347-00-00364-7.  Google Scholar

[19]

P. Constantin, On the Euler equations of incompressible fluids,, Bull. Amer. Math. Soc., 44 (2007), 603.  doi: 10.1090/S0273-0979-07-01184-6.  Google Scholar

[20]

P. Constantin, C. Fefferman and A. Majda, Geometric constraints on potential singularity formulation in the 3-D Euler equations,, Comm. P.D.E., 21 (1996), 559.  doi: 10.1080/03605309608821197.  Google Scholar

[21]

P. Constantin, P. Lax and A. Majda, A simple one-dimensional model for the three dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715.  doi: 10.1002/cpa.3160380605.  Google Scholar

[22]

L. Euler, Principes généraux du mouvement des fluides,, Mémoires de l'Académie des Sciences de Berlin, 11 (1755), 274.   Google Scholar

[23]

U. Frisch, T. Matsumoto and J. Bec, Singularities of Euler Flow? Not Out of the Blue!,, J. Stat. Phys., 113 (2003), 761.  doi: 10.1023/A:1027308602344.  Google Scholar

[24]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,", Springer Tracts in Natural Philosophy, 39 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[25]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297.  doi: 10.1002/cpa.3160380304.  Google Scholar

[26]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbbR^3$,, J. Funct. Anal., 9 (1972), 296.   Google Scholar

[27]

R. M. Kerr, Vortex collapse and turbulence,, Fluid Dynamics Research, 36 (2005), 249.  doi: 10.1016/j.fluiddyn.2004.09.003.  Google Scholar

[28]

G. Koch, N. Nadirashvili, G. Seregin and V. Šverák, Liouville theorems for the Navier-Stokes equations and applications,, Acta Math., 203 (2009), 83.  doi: 10.1007/s11511-009-0039-6.  Google Scholar

[29]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations,, Comm. Math. Phys., 214 (2000), 191.  doi: 10.1007/s002200000267.  Google Scholar

[30]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semilinear evolution equations,, Math Z., 242 (2002), 251.  doi: 10.1007/s002090100332.  Google Scholar

[31]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[32]

A. Majda and A. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge Texts in Applied Mathematics, 27 (2002).   Google Scholar

[33]

J. Nečas, M. Ružička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations,, Acta Math., 176 (1996), 283.  doi: 10.1007/BF02551584.  Google Scholar

[34]

T.-P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates,, Arch. Rat. Mech. Anal., 143 (1998), 29.  doi: 10.1007/s002050050099.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[12]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]