-
Previous Article
On instability of the Ekman spiral
- DCDS-S Home
- This Issue
-
Next Article
On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces
Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains
1. | Fachbereich Mathematik and Center of Smart Interfaces (CSI), Technische Universität Darmstadt, 64283 Darmstadt |
2. | Department of Mathematical Sciences, Shinshu University, Matsumoto 390-8621, Japan |
References:
[1] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monographs in Mathematics, 96 (2001).
|
[2] |
W. Borchers and T. Miyakawa, $L^2$ decay for Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139.
doi: 10.1007/BF01457017. |
[3] |
W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains,, Acta Math., 165 (1990), 189.
doi: 10.1007/BF02391905. |
[4] |
M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations,, Rev. Mat. Iberoamericana, 16 (2000), 1.
doi: 10.4171/RMI/268. |
[5] |
C. Corduneanu, "Almost Periodic Functions,", Interscience Tracts in Pure and Applied Mathematics, (1968).
|
[6] |
F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions,, Math. Meth. Appl. Sci., 31 (2008), 249.
doi: 10.1002/mma.903. |
[7] |
R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249.
doi: 10.1007/s11565-010-0108-y. |
[8] |
R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains,, J. Math. Soc. Japan, 46 (1994), 607.
doi: 10.2969/jmsj/04640607. |
[9] |
R. Farwig and H. Sohr, On the Stokes and Navier-Stokes system for domains with noncompact boundary in $L^q$-spaces,, Math. Nachr., 170 (1994), 53.
doi: 10.1002/mana.19941700106. |
[10] |
R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-space,, Analysis, 16 (1996), 1.
|
[11] |
R. Farwig and Y. Taniuchi, Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains,, J. Evol. Equ., 11 (2011), 485.
doi: 10.1007/s00028-010-0098-3. |
[12] |
R. Farwig and Y. Taniuchi, Backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains,, preprint., (). Google Scholar |
[13] |
D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields,, J. Fac. Sci. Univ. Tokyo, 24 (1977), 685.
|
[14] |
G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l'unicité dans $L^3(\mathbbR^3)$ des solutions "mild" des équations de Navier-Stokes,, C. R. Acad. Sci. Paris, 325 (1997), 1253.
doi: 10.1016/S0764-4442(97)82348-8. |
[15] |
G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body,, Arch. Ration. Mech. Anal., 172 (2004), 363.
doi: 10.1007/s00205-004-0306-9. |
[16] |
Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L^r$ spaces,, Math. Z., 178 (1981), 297.
doi: 10.1007/BF01214869. |
[17] |
Y. Giga and H. Sohr, On the Stokes operator in exterior domains,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103.
|
[18] |
H. Iwashita, $L_q-L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_q$ spaces,, Math. Ann., 285 (1989), 265.
doi: 10.1007/BF01443518. |
[19] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.
doi: 10.1007/BF01174182. |
[20] |
H. Kozono and M. Nakao, Periodic solutions of the the Navier-Stokes equations in unbounded domains,, Tohoku Math. J. (2), 48 (1996), 33.
doi: 10.2748/tmj/1178225411. |
[21] |
H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains,, Arch. Ration. Mech. Anal., 128 (1994), 1.
doi: 10.1007/BF00380792. |
[22] |
H. Kozono and M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space,, Math. Ann., 310 (1998), 279.
doi: 10.1007/s002080050149. |
[23] |
H. Kozono and M. Yamazaki, Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains,, Nonlinear Anal., 38 (1999), 959.
doi: 10.1016/S0362-546X(98)00145-X. |
[24] |
T. Kubo, The Stokes and Navier-Stokes Equations in an aperture domain,, J. Math. Soc. Japan, 59 (2007), 837.
|
[25] |
T. Kubo, Periodic solutions of the Navier-Stokes equations in a perturbed half-space and an aperture domain,, Math. Methods Appl. Sci., 28 (2005), 1341.
doi: 10.1002/mma.618. |
[26] |
T. Kubo and Y. Shibata, On some properties of solutions to the Stokes equation in the half-space and perturbed half-space,, in, 15 (2004), 149.
|
[27] |
P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$,, Comm. Partial Differential Equations, 26 (2001), 2211.
doi: 10.1081/PDE-100107819. |
[28] |
P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.
|
[29] |
P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space,, Ric. Mat., 40 (1991), 81.
|
[30] |
P. Maremonti and M. Padula, Existence, uniqueness, and attainability of periodic solutions of the Navier-Stokes equations in exterior domains,, J. Math. Sci. (New York), 93 (1999), 719.
doi: 10.1007/BF02366850. |
[31] |
Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations,, in, (1997), 105.
|
[32] |
T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.
|
[33] |
S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal $L^p$-regularity,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 663.
doi: 10.1016/S0764-4442(99)80231-6. |
[34] |
R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries,, in, (1995), 63.
|
[35] |
C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992), 1.
|
[36] |
Y. Taniuchi, On stability of periodic solutions of the Navier-Stokes equations in unbounded domains,, Hokkaido Math. J., 28 (1999), 147.
|
[37] |
Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 261 (2009), 597.
doi: 10.1007/s00209-008-0341-6. |
[38] |
S. Ukai, A solution formula for the Stokes equation in $\mathbbR^n_+$,, Comm. Pure Appl. Math., 40 (1987), 611.
doi: 10.1002/cpa.3160400506. |
[39] |
M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.
doi: 10.1007/PL00004418. |
show all references
References:
[1] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monographs in Mathematics, 96 (2001).
|
[2] |
W. Borchers and T. Miyakawa, $L^2$ decay for Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139.
doi: 10.1007/BF01457017. |
[3] |
W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains,, Acta Math., 165 (1990), 189.
doi: 10.1007/BF02391905. |
[4] |
M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations,, Rev. Mat. Iberoamericana, 16 (2000), 1.
doi: 10.4171/RMI/268. |
[5] |
C. Corduneanu, "Almost Periodic Functions,", Interscience Tracts in Pure and Applied Mathematics, (1968).
|
[6] |
F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions,, Math. Meth. Appl. Sci., 31 (2008), 249.
doi: 10.1002/mma.903. |
[7] |
R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249.
doi: 10.1007/s11565-010-0108-y. |
[8] |
R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains,, J. Math. Soc. Japan, 46 (1994), 607.
doi: 10.2969/jmsj/04640607. |
[9] |
R. Farwig and H. Sohr, On the Stokes and Navier-Stokes system for domains with noncompact boundary in $L^q$-spaces,, Math. Nachr., 170 (1994), 53.
doi: 10.1002/mana.19941700106. |
[10] |
R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-space,, Analysis, 16 (1996), 1.
|
[11] |
R. Farwig and Y. Taniuchi, Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains,, J. Evol. Equ., 11 (2011), 485.
doi: 10.1007/s00028-010-0098-3. |
[12] |
R. Farwig and Y. Taniuchi, Backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains,, preprint., (). Google Scholar |
[13] |
D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields,, J. Fac. Sci. Univ. Tokyo, 24 (1977), 685.
|
[14] |
G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l'unicité dans $L^3(\mathbbR^3)$ des solutions "mild" des équations de Navier-Stokes,, C. R. Acad. Sci. Paris, 325 (1997), 1253.
doi: 10.1016/S0764-4442(97)82348-8. |
[15] |
G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body,, Arch. Ration. Mech. Anal., 172 (2004), 363.
doi: 10.1007/s00205-004-0306-9. |
[16] |
Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L^r$ spaces,, Math. Z., 178 (1981), 297.
doi: 10.1007/BF01214869. |
[17] |
Y. Giga and H. Sohr, On the Stokes operator in exterior domains,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103.
|
[18] |
H. Iwashita, $L_q-L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_q$ spaces,, Math. Ann., 285 (1989), 265.
doi: 10.1007/BF01443518. |
[19] |
T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471.
doi: 10.1007/BF01174182. |
[20] |
H. Kozono and M. Nakao, Periodic solutions of the the Navier-Stokes equations in unbounded domains,, Tohoku Math. J. (2), 48 (1996), 33.
doi: 10.2748/tmj/1178225411. |
[21] |
H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains,, Arch. Ration. Mech. Anal., 128 (1994), 1.
doi: 10.1007/BF00380792. |
[22] |
H. Kozono and M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space,, Math. Ann., 310 (1998), 279.
doi: 10.1007/s002080050149. |
[23] |
H. Kozono and M. Yamazaki, Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains,, Nonlinear Anal., 38 (1999), 959.
doi: 10.1016/S0362-546X(98)00145-X. |
[24] |
T. Kubo, The Stokes and Navier-Stokes Equations in an aperture domain,, J. Math. Soc. Japan, 59 (2007), 837.
|
[25] |
T. Kubo, Periodic solutions of the Navier-Stokes equations in a perturbed half-space and an aperture domain,, Math. Methods Appl. Sci., 28 (2005), 1341.
doi: 10.1002/mma.618. |
[26] |
T. Kubo and Y. Shibata, On some properties of solutions to the Stokes equation in the half-space and perturbed half-space,, in, 15 (2004), 149.
|
[27] |
P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$,, Comm. Partial Differential Equations, 26 (2001), 2211.
doi: 10.1081/PDE-100107819. |
[28] |
P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.
|
[29] |
P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space,, Ric. Mat., 40 (1991), 81.
|
[30] |
P. Maremonti and M. Padula, Existence, uniqueness, and attainability of periodic solutions of the Navier-Stokes equations in exterior domains,, J. Math. Sci. (New York), 93 (1999), 719.
doi: 10.1007/BF02366850. |
[31] |
Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations,, in, (1997), 105.
|
[32] |
T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.
|
[33] |
S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal $L^p$-regularity,, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 663.
doi: 10.1016/S0764-4442(99)80231-6. |
[34] |
R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries,, in, (1995), 63.
|
[35] |
C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992), 1.
|
[36] |
Y. Taniuchi, On stability of periodic solutions of the Navier-Stokes equations in unbounded domains,, Hokkaido Math. J., 28 (1999), 147.
|
[37] |
Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 261 (2009), 597.
doi: 10.1007/s00209-008-0341-6. |
[38] |
S. Ukai, A solution formula for the Stokes equation in $\mathbbR^n_+$,, Comm. Pure Appl. Math., 40 (1987), 611.
doi: 10.1002/cpa.3160400506. |
[39] |
M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.
doi: 10.1007/PL00004418. |
[1] |
Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237 |
[2] |
Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157 |
[3] |
Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703 |
[4] |
Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045 |
[5] |
Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35 |
[6] |
Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 |
[7] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[8] |
Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355 |
[9] |
Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783 |
[10] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
[11] |
Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181 |
[12] |
Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215 |
[13] |
Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173 |
[14] |
Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199 |
[15] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[16] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[17] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[18] |
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 |
[19] |
Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361 |
[20] |
Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]