October  2013, 6(5): 1215-1224. doi: 10.3934/dcdss.2013.6.1215

Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains

1. 

Fachbereich Mathematik and Center of Smart Interfaces (CSI), Technische Universität Darmstadt, 64283 Darmstadt

2. 

Department of Mathematical Sciences, Shinshu University, Matsumoto 390-8621, Japan

Received  November 2011 Published  March 2013

We present a uniqueness theorem for backward asymptotically almost periodic solutions to the Navier-Stokes equations in $3$-dimensional unbounded domains. Thus far, uniqueness of such solutions to the Navier-Stokes equations in unbounded domain, roughly speaking, is known only for a small solution in $BC(-\infty,T;L^{3}_w)$ within the class of solutions which have sufficiently small $L^{\infty}( L^{3}_w)$-norm. In this paper, we show that a small backward asymptotically almost periodic solution in $BC(-\infty,T;L^{3}_w\cap L^{6,2})$ is unique within the class of all backward asymptotically almost periodic solutions in $BC(-\infty,T;L^{3}_w\cap L^{6,2})$.
Citation: Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215
References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems," Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.  Google Scholar

[2]

W. Borchers and T. Miyakawa, $L^2$ decay for Navier-Stokes flow in halfspaces, Math. Ann., 282 (1988), 139-155. doi: 10.1007/BF01457017.  Google Scholar

[3]

W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains, Acta Math., 165 (1990), 189-227. doi: 10.1007/BF02391905.  Google Scholar

[4]

M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations, Rev. Mat. Iberoamericana, 16 (2000), 1-16. doi: 10.4171/RMI/268.  Google Scholar

[5]

C. Corduneanu, "Almost Periodic Functions," Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968.  Google Scholar

[6]

F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions, Math. Meth. Appl. Sci., 31 (2008), 249-277. doi: 10.1002/mma.903.  Google Scholar

[7]

R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249-281. doi: 10.1007/s11565-010-0108-y.  Google Scholar

[8]

R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643. doi: 10.2969/jmsj/04640607.  Google Scholar

[9]

R. Farwig and H. Sohr, On the Stokes and Navier-Stokes system for domains with noncompact boundary in $L^q$-spaces, Math. Nachr., 170 (1994), 53-77. doi: 10.1002/mana.19941700106.  Google Scholar

[10]

R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-space, Analysis, 16 (1996), 1-26.  Google Scholar

[11]

R. Farwig and Y. Taniuchi, Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains, J. Evol. Equ., 11 (2011), 485-508. doi: 10.1007/s00028-010-0098-3.  Google Scholar

[12]

R. Farwig and Y. Taniuchi, Backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains,, preprint., ().   Google Scholar

[13]

D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 24 (1977), 685-700.  Google Scholar

[14]

G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l'unicité dans $L^3(\mathbbR^3)$ des solutions "mild" des équations de Navier-Stokes, C. R. Acad. Sci. Paris, Sér. I Math., 325 (1997), 1253-1256. doi: 10.1016/S0764-4442(97)82348-8.  Google Scholar

[15]

G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406. doi: 10.1007/s00205-004-0306-9.  Google Scholar

[16]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L^r$ spaces, Math. Z., 178 (1981), 297-329. doi: 10.1007/BF01214869.  Google Scholar

[17]

Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103-130.  Google Scholar

[18]

H. Iwashita, $L_q-L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_q$ spaces, Math. Ann., 285 (1989), 265-288. doi: 10.1007/BF01443518.  Google Scholar

[19]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $R^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.  Google Scholar

[20]

H. Kozono and M. Nakao, Periodic solutions of the the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2), 48 (1996), 33-50. doi: 10.2748/tmj/1178225411.  Google Scholar

[21]

H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains, Arch. Ration. Mech. Anal., 128 (1994), 1-31. doi: 10.1007/BF00380792.  Google Scholar

[22]

H. Kozono and M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space, Math. Ann., 310 (1998), 279-305. doi: 10.1007/s002080050149.  Google Scholar

[23]

H. Kozono and M. Yamazaki, Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains, Nonlinear Anal., 38 (1999), Ser. A: Theory and Methods, 959-970. doi: 10.1016/S0362-546X(98)00145-X.  Google Scholar

[24]

T. Kubo, The Stokes and Navier-Stokes Equations in an aperture domain, J. Math. Soc. Japan, 59 (2007), 837-859.  Google Scholar

[25]

T. Kubo, Periodic solutions of the Navier-Stokes equations in a perturbed half-space and an aperture domain, Math. Methods Appl. Sci., 28 (2005), 1341-1357. doi: 10.1002/mma.618.  Google Scholar

[26]

T. Kubo and Y. Shibata, On some properties of solutions to the Stokes equation in the half-space and perturbed half-space, in "Dispersive Nonlinear Problems in Mathematical Physics," Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, (2004), 149-220.  Google Scholar

[27]

P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$, Comm. Partial Differential Equations, 26 (2001), 2211-2226. doi: 10.1081/PDE-100107819.  Google Scholar

[28]

P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529.  Google Scholar

[29]

P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space, Ric. Mat., 40 (1991), 81-135.  Google Scholar

[30]

P. Maremonti and M. Padula, Existence, uniqueness, and attainability of periodic solutions of the Navier-Stokes equations in exterior domains, J. Math. Sci. (New York), 93 (1999), 719-746. doi: 10.1007/BF02366850.  Google Scholar

[31]

Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations, in "Current Developments in Mathematics, 1996" (Cambridge, MA), Int. Press, Boston, MA, (1997), 105-212.  Google Scholar

[32]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.  Google Scholar

[33]

S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal $L^p$-regularity, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 663-668. doi: 10.1016/S0764-4442(99)80231-6.  Google Scholar

[34]

R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries, in "Navier-Stokes Equations and Related Nonlinear Problems" (ed. A. Sequeira) (Funchal, 1994), Plenum, New York, (1995), 63-73.  Google Scholar

[35]

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in "Mathematical Problems Relating to the Navier-Stokes Equation" (ed. G. P. Galdi), Series Adv. Math. Appl. Sci., 11, World Scientific, River Edge, NJ, (1992), 1-35.  Google Scholar

[36]

Y. Taniuchi, On stability of periodic solutions of the Navier-Stokes equations in unbounded domains, Hokkaido Math. J., 28 (1999), 147-173.  Google Scholar

[37]

Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains, Math. Z., 261 (2009), 597-615. doi: 10.1007/s00209-008-0341-6.  Google Scholar

[38]

S. Ukai, A solution formula for the Stokes equation in $\mathbbR^n_+$, Comm. Pure Appl. Math., 40 (1987), 611-621. doi: 10.1002/cpa.3160400506.  Google Scholar

[39]

M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675. doi: 10.1007/PL00004418.  Google Scholar

show all references

References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems," Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.  Google Scholar

[2]

W. Borchers and T. Miyakawa, $L^2$ decay for Navier-Stokes flow in halfspaces, Math. Ann., 282 (1988), 139-155. doi: 10.1007/BF01457017.  Google Scholar

[3]

W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains, Acta Math., 165 (1990), 189-227. doi: 10.1007/BF02391905.  Google Scholar

[4]

M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations, Rev. Mat. Iberoamericana, 16 (2000), 1-16. doi: 10.4171/RMI/268.  Google Scholar

[5]

C. Corduneanu, "Almost Periodic Functions," Interscience Tracts in Pure and Applied Mathematics, No. 22, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1968.  Google Scholar

[6]

F. Crispo and P. Maremonti, Navier-Stokes equations in aperture domains: Global existence with bounded flux and time-periodic solutions, Math. Meth. Appl. Sci., 31 (2008), 249-277. doi: 10.1002/mma.903.  Google Scholar

[7]

R. Farwig and T. Okabe, Periodic solutions of the Navier-Stokes equations with inhomogeneous boundary conditions, Ann. Univ. Ferrara Sez. VII Sci. Mat., 56 (2010), 249-281. doi: 10.1007/s11565-010-0108-y.  Google Scholar

[8]

R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643. doi: 10.2969/jmsj/04640607.  Google Scholar

[9]

R. Farwig and H. Sohr, On the Stokes and Navier-Stokes system for domains with noncompact boundary in $L^q$-spaces, Math. Nachr., 170 (1994), 53-77. doi: 10.1002/mana.19941700106.  Google Scholar

[10]

R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-space, Analysis, 16 (1996), 1-26.  Google Scholar

[11]

R. Farwig and Y. Taniuchi, Uniqueness of almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains, J. Evol. Equ., 11 (2011), 485-508. doi: 10.1007/s00028-010-0098-3.  Google Scholar

[12]

R. Farwig and Y. Taniuchi, Backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains,, preprint., ().   Google Scholar

[13]

D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 24 (1977), 685-700.  Google Scholar

[14]

G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l'unicité dans $L^3(\mathbbR^3)$ des solutions "mild" des équations de Navier-Stokes, C. R. Acad. Sci. Paris, Sér. I Math., 325 (1997), 1253-1256. doi: 10.1016/S0764-4442(97)82348-8.  Google Scholar

[15]

G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body, Arch. Ration. Mech. Anal., 172 (2004), 363-406. doi: 10.1007/s00205-004-0306-9.  Google Scholar

[16]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L^r$ spaces, Math. Z., 178 (1981), 297-329. doi: 10.1007/BF01214869.  Google Scholar

[17]

Y. Giga and H. Sohr, On the Stokes operator in exterior domains, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103-130.  Google Scholar

[18]

H. Iwashita, $L_q-L_r$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problems in $L_q$ spaces, Math. Ann., 285 (1989), 265-288. doi: 10.1007/BF01443518.  Google Scholar

[19]

T. Kato, Strong $L^p$-solutions of the Navier-Stokes equation in $R^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182.  Google Scholar

[20]

H. Kozono and M. Nakao, Periodic solutions of the the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2), 48 (1996), 33-50. doi: 10.2748/tmj/1178225411.  Google Scholar

[21]

H. Kozono and T. Ogawa, On stability of Navier-Stokes flows in exterior domains, Arch. Ration. Mech. Anal., 128 (1994), 1-31. doi: 10.1007/BF00380792.  Google Scholar

[22]

H. Kozono and M. Yamazaki, Exterior problem for the stationary Navier-Stokes equations in the Lorentz space, Math. Ann., 310 (1998), 279-305. doi: 10.1007/s002080050149.  Google Scholar

[23]

H. Kozono and M. Yamazaki, Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains, Nonlinear Anal., 38 (1999), Ser. A: Theory and Methods, 959-970. doi: 10.1016/S0362-546X(98)00145-X.  Google Scholar

[24]

T. Kubo, The Stokes and Navier-Stokes Equations in an aperture domain, J. Math. Soc. Japan, 59 (2007), 837-859.  Google Scholar

[25]

T. Kubo, Periodic solutions of the Navier-Stokes equations in a perturbed half-space and an aperture domain, Math. Methods Appl. Sci., 28 (2005), 1341-1357. doi: 10.1002/mma.618.  Google Scholar

[26]

T. Kubo and Y. Shibata, On some properties of solutions to the Stokes equation in the half-space and perturbed half-space, in "Dispersive Nonlinear Problems in Mathematical Physics," Quad. Mat., 15, Dept. Math., Seconda Univ. Napoli, Caserta, (2004), 149-220.  Google Scholar

[27]

P.-L. Lions and N. Masmoudi, Uniqueness of mild solutions of the Navier-Stokes system in $L^N$, Comm. Partial Differential Equations, 26 (2001), 2211-2226. doi: 10.1081/PDE-100107819.  Google Scholar

[28]

P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space, Nonlinearity, 4 (1991), 503-529.  Google Scholar

[29]

P. Maremonti, Some theorems of existence for solutions of the Navier-Stokes equations with slip boundary conditions in half-space, Ric. Mat., 40 (1991), 81-135.  Google Scholar

[30]

P. Maremonti and M. Padula, Existence, uniqueness, and attainability of periodic solutions of the Navier-Stokes equations in exterior domains, J. Math. Sci. (New York), 93 (1999), 719-746. doi: 10.1007/BF02366850.  Google Scholar

[31]

Y. Meyer, Wavelets, paraproducts, and Navier-Stokes equations, in "Current Developments in Mathematics, 1996" (Cambridge, MA), Int. Press, Boston, MA, (1997), 105-212.  Google Scholar

[32]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.  Google Scholar

[33]

S. Monniaux, Uniqueness of mild solutions of the Navier-Stokes equation and maximal $L^p$-regularity, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 663-668. doi: 10.1016/S0764-4442(99)80231-6.  Google Scholar

[34]

R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries, in "Navier-Stokes Equations and Related Nonlinear Problems" (ed. A. Sequeira) (Funchal, 1994), Plenum, New York, (1995), 63-73.  Google Scholar

[35]

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in "Mathematical Problems Relating to the Navier-Stokes Equation" (ed. G. P. Galdi), Series Adv. Math. Appl. Sci., 11, World Scientific, River Edge, NJ, (1992), 1-35.  Google Scholar

[36]

Y. Taniuchi, On stability of periodic solutions of the Navier-Stokes equations in unbounded domains, Hokkaido Math. J., 28 (1999), 147-173.  Google Scholar

[37]

Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains, Math. Z., 261 (2009), 597-615. doi: 10.1007/s00209-008-0341-6.  Google Scholar

[38]

S. Ukai, A solution formula for the Stokes equation in $\mathbbR^n_+$, Comm. Pure Appl. Math., 40 (1987), 611-621. doi: 10.1002/cpa.3160400506.  Google Scholar

[39]

M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675. doi: 10.1007/PL00004418.  Google Scholar

[1]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[2]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[3]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[4]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[5]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[6]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[7]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[8]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[9]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[10]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[11]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[12]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[13]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[14]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[15]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[16]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[17]

Oleg Imanuvilov. On the asymptotic properties for stationary solutions to the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2301-2340. doi: 10.3934/dcds.2020366

[18]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[19]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[20]

Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]