• Previous Article
    Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane
  • DCDS-S Home
  • This Issue
  • Next Article
    Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains
October  2013, 6(5): 1225-1236. doi: 10.3934/dcdss.2013.6.1225

On instability of the Ekman spiral

1. 

Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstraße 32, 64287 Darmstadt, Germany

Received  November 2011 Revised  February 2012 Published  March 2013

The aim of this note is to present a new approach to linear and nonlinear instability of the Ekman spiral, the famous stationary geostrophic solution of the 3D Navier-Stokes equations in a rotating frame. As former approaches to the Ekman boundary layer problem, our result is based on the numerical existence of an unstable wave perturbation for Reynolds numbers large enough derived by Lilly in [15]. By the fact that this unstable wave is tangentially nondecaying at infinity, however, standard approaches (e.g. by cut-off techniques) to instability in standard function spaces (e.g. $L^p$) remain a technical and intricate issue. In spite of this fact, we will present a rather short proof of linear and nonlinear instability of the Ekman spiral in $L^2$. The results are based on a recently developed general approach to rotating boundary layer problems, which relies on Fourier transformed vector Radon measures, cf.[11].
Citation: André Fischer, Jürgen Saal. On instability of the Ekman spiral. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1225-1236. doi: 10.3934/dcdss.2013.6.1225
References:
[1]

H. Abels, Bounded imaginary powers and $H^\infty$-calculus of the Stokes operator in unbounded domains,, in, 64 (2005), 1.  doi: 10.1007/3-7643-7385-7_1.  Google Scholar

[2]

R. A. Adams and J. J. Fournier, "Sobolev Spaces,", $2^{nd}$ edition, 140 (2003).   Google Scholar

[3]

B. Desjardins, E. Dormy and E. Grenier, Stability of mixed Ekman-Hartmann boundary layers,, Nonlinearity, 12 (1999), 181.  doi: 10.1088/0951-7715/12/2/001.  Google Scholar

[4]

B. Desjardins and E. Grenier, Linear instability implies nonlinear instability for various types of viscous boundary layers,, Ann. I. H. Poincaré Anal. Non Linéaire, 20 (2003), 87.  doi: 10.1016/S0294-1449(02)00009-4.  Google Scholar

[5]

J. Diestel and J. J. Uhl, Jr., "Vector Measures,", Mathematical Surveys, (1977).   Google Scholar

[6]

V. W. Ekman, On the influence of the earth's rotation on ocean currents,, Arkiv Matem. Astr. Fysik, 11 (1905), 1.   Google Scholar

[7]

K.-J. Engel and R. Nagel, "A Short Course on Operator Semigroups,", Universitext, (2006).   Google Scholar

[8]

Y. Giga, K. Inui, A. Mahalov and S. Matsui, Uniform local solvability of the Navier-Stokes equations with the Coriolis force,, Methods Appl. Anal., 12 (2005), 381.   Google Scholar

[9]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Global solvability of the Navier-Stokes equations in spaces based on sum-closed frequency sets,, Adv. Differ. Equ., 12 (2007), 721.   Google Scholar

[10]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data,, Indiana Univ. Math. J., 57 (2008), 2775.  doi: 10.1512/iumj.2008.57.3795.  Google Scholar

[11]

Y. Giga and J. Saal, An approach to rotating boundary layers based on vector Radon measures,, preprint., ().   Google Scholar

[12]

L. Greenberg and M. Marletta, The Ekman flow and related problems: Spectral theory and numerical analysis,, Math. Proc. Cambridge Philos. Soc., 136 (2004), 719.  doi: 10.1017/S030500410300731X.  Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations",, Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[14]

M. Hess, M. Hieber, A. Mahalov and J. Saal, Nonlinear stability of Ekman boundary layers,, Bull. London Math. Soc., 42 (2010), 691.  doi: 10.1112/blms/bdq029.  Google Scholar

[15]

D. Lilly, On the instability of Ekman boundary flow,, J. Atmospheric Sci., 23 (1966), 481.   Google Scholar

[16]

M. Marletta and C. Tretter, Essential spectra of coupled systems of differential equations and applications in hydrodynamics,, J. Diff. Eq., 243 (2007), 36.  doi: 10.1016/j.jde.2007.09.002.  Google Scholar

show all references

References:
[1]

H. Abels, Bounded imaginary powers and $H^\infty$-calculus of the Stokes operator in unbounded domains,, in, 64 (2005), 1.  doi: 10.1007/3-7643-7385-7_1.  Google Scholar

[2]

R. A. Adams and J. J. Fournier, "Sobolev Spaces,", $2^{nd}$ edition, 140 (2003).   Google Scholar

[3]

B. Desjardins, E. Dormy and E. Grenier, Stability of mixed Ekman-Hartmann boundary layers,, Nonlinearity, 12 (1999), 181.  doi: 10.1088/0951-7715/12/2/001.  Google Scholar

[4]

B. Desjardins and E. Grenier, Linear instability implies nonlinear instability for various types of viscous boundary layers,, Ann. I. H. Poincaré Anal. Non Linéaire, 20 (2003), 87.  doi: 10.1016/S0294-1449(02)00009-4.  Google Scholar

[5]

J. Diestel and J. J. Uhl, Jr., "Vector Measures,", Mathematical Surveys, (1977).   Google Scholar

[6]

V. W. Ekman, On the influence of the earth's rotation on ocean currents,, Arkiv Matem. Astr. Fysik, 11 (1905), 1.   Google Scholar

[7]

K.-J. Engel and R. Nagel, "A Short Course on Operator Semigroups,", Universitext, (2006).   Google Scholar

[8]

Y. Giga, K. Inui, A. Mahalov and S. Matsui, Uniform local solvability of the Navier-Stokes equations with the Coriolis force,, Methods Appl. Anal., 12 (2005), 381.   Google Scholar

[9]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Global solvability of the Navier-Stokes equations in spaces based on sum-closed frequency sets,, Adv. Differ. Equ., 12 (2007), 721.   Google Scholar

[10]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data,, Indiana Univ. Math. J., 57 (2008), 2775.  doi: 10.1512/iumj.2008.57.3795.  Google Scholar

[11]

Y. Giga and J. Saal, An approach to rotating boundary layers based on vector Radon measures,, preprint., ().   Google Scholar

[12]

L. Greenberg and M. Marletta, The Ekman flow and related problems: Spectral theory and numerical analysis,, Math. Proc. Cambridge Philos. Soc., 136 (2004), 719.  doi: 10.1017/S030500410300731X.  Google Scholar

[13]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations",, Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[14]

M. Hess, M. Hieber, A. Mahalov and J. Saal, Nonlinear stability of Ekman boundary layers,, Bull. London Math. Soc., 42 (2010), 691.  doi: 10.1112/blms/bdq029.  Google Scholar

[15]

D. Lilly, On the instability of Ekman boundary flow,, J. Atmospheric Sci., 23 (1966), 481.   Google Scholar

[16]

M. Marletta and C. Tretter, Essential spectra of coupled systems of differential equations and applications in hydrodynamics,, J. Diff. Eq., 243 (2007), 36.  doi: 10.1016/j.jde.2007.09.002.  Google Scholar

[1]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[2]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[3]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[4]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[5]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[6]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[7]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[8]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[9]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[10]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[11]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[12]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[13]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[14]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[15]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[16]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[17]

Tae-Yeon Kim, Xuemei Chen, John E. Dolbow, Eliot Fried. Going to new lengths: Studying the Navier--Stokes-$\alpha\beta$ equations using the strained spiral vortex model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2207-2225. doi: 10.3934/dcdsb.2014.19.2207

[18]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[19]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[20]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]