October  2013, 6(5): 1237-1257. doi: 10.3934/dcdss.2013.6.1237

Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane

1. 

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States

Received  November 2011 Revised  February 2012 Published  March 2013

We consider the two-dimensional motion of a Navier-Stokes liquid in the whole plane, under the action of a time-periodic body force $F$ of period $T$, and tending to a prescribed nonzero constant velocity at infinity. We show that if the magnitude of $F$, in suitable norm, is sufficiently small, there exists one and only one corresponding time-periodic flow of period $T$ in an appropriate function class.
Citation: Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237
References:
[1]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,", $2^{nd}$ edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[2]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Amer. Math. Soc., 141 (2013), 573.  doi: 10.1090/S0002-9939-2012-11638-7.  Google Scholar

[3]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Amer. Math. Soc., 141 (2013), 1313.  doi: 10.1090/S0002-9939-2012-11640-5.  Google Scholar

[4]

G. P. Galdi and P. J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: Planar exterior domains,, in, 35 (1999), 273.   Google Scholar

[5]

G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific J. Math., 223 (2006), 251.  doi: 10.2140/pjm.2006.223.251.  Google Scholar

[6]

G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force,, Indiana Univ. Math. J., 58 (2009), 2805.  doi: 10.1512/iumj.2009.58.3758.  Google Scholar

[7]

G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body,, Arch. Ration. Mech. Anal., 172 (2004), 363.  doi: 10.1007/s00205-004-0306-9.  Google Scholar

[8]

K. Kang, H. Miura and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data,, Comm. Partial Differential Equations, 37 (2012), 1717.  doi: 10.1080/03605302.2012.708082.  Google Scholar

[9]

M. Kyed, Existence and asymptotic properties of time-periodic solutions to the three dimensional Navier-Stokes equations,, in preparation., ().   Google Scholar

[10]

H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains,, Tohoku Math. J. (2), 48 (1996), 33.  doi: 10.2748/tmj/1178225411.  Google Scholar

[11]

J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, (French) [Interpolation spaces between Hilbert spaces and applications],, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2(50) (1958), 419.   Google Scholar

[12]

P. Maremonti, Existence and stability of time periodic solutions of the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.   Google Scholar

[13]

P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains,, J. Math. Sci. (New York), 93 (1999), 719.  doi: 10.1007/BF02366850.  Google Scholar

[14]

L. Nirenberg, On elliptic partial differential equations,, Ann. Sc. Norm. Super. Pisa (3), 13 (1959), 115.   Google Scholar

[15]

G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, (Italian) [Local theorems for the Navier-Stokes system and stability of steady-state solutions],, Rend. Sem. Mat. Univ. Padova, 32 (1962), 374.   Google Scholar

[16]

R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries,, in, (1995), 63.   Google Scholar

[17]

V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system,, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.   Google Scholar

[18]

Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 261 (2009), 597.  doi: 10.1007/s00209-008-0341-6.  Google Scholar

[19]

G. van Baalen and P. Wittwer, Time periodic solutions of the Navier-Stokes equations with nonzero constant boundary conditions at infinity,, SIAM J. Math. Anal., 43 (2011), 1787.  doi: 10.1137/100809842.  Google Scholar

[20]

M. Yamazaki, The Navier-Stokes equations in the weak$-L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.  doi: 10.1007/PL00004418.  Google Scholar

show all references

References:
[1]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,", $2^{nd}$ edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[2]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Amer. Math. Soc., 141 (2013), 573.  doi: 10.1090/S0002-9939-2012-11638-7.  Google Scholar

[3]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Amer. Math. Soc., 141 (2013), 1313.  doi: 10.1090/S0002-9939-2012-11640-5.  Google Scholar

[4]

G. P. Galdi and P. J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: Planar exterior domains,, in, 35 (1999), 273.   Google Scholar

[5]

G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific J. Math., 223 (2006), 251.  doi: 10.2140/pjm.2006.223.251.  Google Scholar

[6]

G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force,, Indiana Univ. Math. J., 58 (2009), 2805.  doi: 10.1512/iumj.2009.58.3758.  Google Scholar

[7]

G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body,, Arch. Ration. Mech. Anal., 172 (2004), 363.  doi: 10.1007/s00205-004-0306-9.  Google Scholar

[8]

K. Kang, H. Miura and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data,, Comm. Partial Differential Equations, 37 (2012), 1717.  doi: 10.1080/03605302.2012.708082.  Google Scholar

[9]

M. Kyed, Existence and asymptotic properties of time-periodic solutions to the three dimensional Navier-Stokes equations,, in preparation., ().   Google Scholar

[10]

H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains,, Tohoku Math. J. (2), 48 (1996), 33.  doi: 10.2748/tmj/1178225411.  Google Scholar

[11]

J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, (French) [Interpolation spaces between Hilbert spaces and applications],, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2(50) (1958), 419.   Google Scholar

[12]

P. Maremonti, Existence and stability of time periodic solutions of the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.   Google Scholar

[13]

P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains,, J. Math. Sci. (New York), 93 (1999), 719.  doi: 10.1007/BF02366850.  Google Scholar

[14]

L. Nirenberg, On elliptic partial differential equations,, Ann. Sc. Norm. Super. Pisa (3), 13 (1959), 115.   Google Scholar

[15]

G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, (Italian) [Local theorems for the Navier-Stokes system and stability of steady-state solutions],, Rend. Sem. Mat. Univ. Padova, 32 (1962), 374.   Google Scholar

[16]

R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries,, in, (1995), 63.   Google Scholar

[17]

V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system,, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.   Google Scholar

[18]

Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 261 (2009), 597.  doi: 10.1007/s00209-008-0341-6.  Google Scholar

[19]

G. van Baalen and P. Wittwer, Time periodic solutions of the Navier-Stokes equations with nonzero constant boundary conditions at infinity,, SIAM J. Math. Anal., 43 (2011), 1787.  doi: 10.1137/100809842.  Google Scholar

[20]

M. Yamazaki, The Navier-Stokes equations in the weak$-L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.  doi: 10.1007/PL00004418.  Google Scholar

[1]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[4]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[5]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[6]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[10]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[11]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[12]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[13]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[14]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[15]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[16]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[17]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[20]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]