-
Previous Article
$H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions
- DCDS-S Home
- This Issue
-
Next Article
On instability of the Ekman spiral
Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane
1. | Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States |
References:
[1] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,", $2^{nd}$ edition, (2011).
doi: 10.1007/978-0-387-09620-9. |
[2] |
G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Amer. Math. Soc., 141 (2013), 573.
doi: 10.1090/S0002-9939-2012-11638-7. |
[3] |
G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Amer. Math. Soc., 141 (2013), 1313.
doi: 10.1090/S0002-9939-2012-11640-5. |
[4] |
G. P. Galdi and P. J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: Planar exterior domains,, in, 35 (1999), 273.
|
[5] |
G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific J. Math., 223 (2006), 251.
doi: 10.2140/pjm.2006.223.251. |
[6] |
G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force,, Indiana Univ. Math. J., 58 (2009), 2805.
doi: 10.1512/iumj.2009.58.3758. |
[7] |
G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body,, Arch. Ration. Mech. Anal., 172 (2004), 363.
doi: 10.1007/s00205-004-0306-9. |
[8] |
K. Kang, H. Miura and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data,, Comm. Partial Differential Equations, 37 (2012), 1717.
doi: 10.1080/03605302.2012.708082. |
[9] |
M. Kyed, Existence and asymptotic properties of time-periodic solutions to the three dimensional Navier-Stokes equations,, in preparation., (). Google Scholar |
[10] |
H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains,, Tohoku Math. J. (2), 48 (1996), 33.
doi: 10.2748/tmj/1178225411. |
[11] |
J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, (French) [Interpolation spaces between Hilbert spaces and applications],, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2(50) (1958), 419.
|
[12] |
P. Maremonti, Existence and stability of time periodic solutions of the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.
|
[13] |
P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains,, J. Math. Sci. (New York), 93 (1999), 719.
doi: 10.1007/BF02366850. |
[14] |
L. Nirenberg, On elliptic partial differential equations,, Ann. Sc. Norm. Super. Pisa (3), 13 (1959), 115.
|
[15] |
G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, (Italian) [Local theorems for the Navier-Stokes system and stability of steady-state solutions],, Rend. Sem. Mat. Univ. Padova, 32 (1962), 374.
|
[16] |
R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries,, in, (1995), 63.
|
[17] |
V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system,, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.
|
[18] |
Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 261 (2009), 597.
doi: 10.1007/s00209-008-0341-6. |
[19] |
G. van Baalen and P. Wittwer, Time periodic solutions of the Navier-Stokes equations with nonzero constant boundary conditions at infinity,, SIAM J. Math. Anal., 43 (2011), 1787.
doi: 10.1137/100809842. |
[20] |
M. Yamazaki, The Navier-Stokes equations in the weak$-L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.
doi: 10.1007/PL00004418. |
show all references
References:
[1] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,", $2^{nd}$ edition, (2011).
doi: 10.1007/978-0-387-09620-9. |
[2] |
G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Amer. Math. Soc., 141 (2013), 573.
doi: 10.1090/S0002-9939-2012-11638-7. |
[3] |
G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part II: Weak solutions,, Proc. Amer. Math. Soc., 141 (2013), 1313.
doi: 10.1090/S0002-9939-2012-11640-5. |
[4] |
G. P. Galdi and P. J. Rabier, Functional properties of the Navier-Stokes operator and bifurcation of stationary solutions: Planar exterior domains,, in, 35 (1999), 273.
|
[5] |
G. P. Galdi and A. L. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific J. Math., 223 (2006), 251.
doi: 10.2140/pjm.2006.223.251. |
[6] |
G. P. Galdi and A. L. Silvestre, On the motion of a rigid body in a Navier-Stokes liquid under the action of a time-periodic force,, Indiana Univ. Math. J., 58 (2009), 2805.
doi: 10.1512/iumj.2009.58.3758. |
[7] |
G. P. Galdi and H. Sohr, Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body,, Arch. Ration. Mech. Anal., 172 (2004), 363.
doi: 10.1007/s00205-004-0306-9. |
[8] |
K. Kang, H. Miura and T.-P. Tsai, Asymptotics of small exterior Navier-Stokes flows with non-decaying boundary data,, Comm. Partial Differential Equations, 37 (2012), 1717.
doi: 10.1080/03605302.2012.708082. |
[9] |
M. Kyed, Existence and asymptotic properties of time-periodic solutions to the three dimensional Navier-Stokes equations,, in preparation., (). Google Scholar |
[10] |
H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains,, Tohoku Math. J. (2), 48 (1996), 33.
doi: 10.2748/tmj/1178225411. |
[11] |
J.-L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, (French) [Interpolation spaces between Hilbert spaces and applications],, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 2(50) (1958), 419.
|
[12] |
P. Maremonti, Existence and stability of time periodic solutions of the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.
|
[13] |
P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic solutions of the Navier-Stokes equations in exterior domains,, J. Math. Sci. (New York), 93 (1999), 719.
doi: 10.1007/BF02366850. |
[14] |
L. Nirenberg, On elliptic partial differential equations,, Ann. Sc. Norm. Super. Pisa (3), 13 (1959), 115.
|
[15] |
G. Prodi, Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie, (Italian) [Local theorems for the Navier-Stokes system and stability of steady-state solutions],, Rend. Sem. Mat. Univ. Padova, 32 (1962), 374.
|
[16] |
R. Salvi, On the existence of periodic weak solutions on the Navier-Stokes equations in exterior regions with periodically moving boundaries,, in, (1995), 63.
|
[17] |
V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system,, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153.
|
[18] |
Y. Taniuchi, On the uniqueness of time-periodic solutions to the Navier-Stokes equations in unbounded domains,, Math. Z., 261 (2009), 597.
doi: 10.1007/s00209-008-0341-6. |
[19] |
G. van Baalen and P. Wittwer, Time periodic solutions of the Navier-Stokes equations with nonzero constant boundary conditions at infinity,, SIAM J. Math. Anal., 43 (2011), 1787.
doi: 10.1137/100809842. |
[20] |
M. Yamazaki, The Navier-Stokes equations in the weak$-L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.
doi: 10.1007/PL00004418. |
[1] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
[2] |
Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215 |
[3] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[4] |
Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837 |
[5] |
Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427 |
[6] |
Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312 |
[7] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[8] |
Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579 |
[9] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[10] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[11] |
Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161 |
[12] |
Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234 |
[13] |
Peter Anthony, Sergey Zelik. Infinite-energy solutions for the Navier-Stokes equations in a strip revisited. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1361-1393. doi: 10.3934/cpaa.2014.13.1361 |
[14] |
Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761 |
[15] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[16] |
Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052 |
[17] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217 |
[18] |
Rafaela Guberović. Smoothness of Koch-Tataru solutions to the Navier-Stokes equations revisited. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 231-236. doi: 10.3934/dcds.2010.27.231 |
[19] |
Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033 |
[20] |
Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]