• Previous Article
    A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane
October  2013, 6(5): 1259-1275. doi: 10.3934/dcdss.2013.6.1259

$H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions

1. 

TU Darmstadt, FB Mathematik, Schlossgartenstr 7, D-64289 Darmstadt, Germany, Germany, Germany

Received  January 2012 Revised  February 2012 Published  March 2013

In this paper we prove that the $L^p$ realisation of a system of Laplace operators subjected to mixed first and zero order boundary conditions admits a bounded $H^{\infty}$-calculus. Furthermore, we apply this result to the Magnetohydrodynamic equation with perfectly conducting wall condition.
Citation: Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259
References:
[1]

in "Nonlinear Elliptic and Parabolic Problems," Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, (2005), 1-15. doi: 10.1007/3-7643-7385-7_1.  Google Scholar

[2]

Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 141-157. doi: 10.3934/dcdss.2010.3.141.  Google Scholar

[3]

Funkcial. Ekvac., 47 (2004), 361-394. doi: 10.1619/fesi.47.361.  Google Scholar

[4]

Math. Methods Appl. Sci., 20 (1997), 737-744. doi: 10.1002/(SICI)1099-1476(199706)20:9<737::AID-MMA863>3.3.CO;2-9.  Google Scholar

[5]

J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  Google Scholar

[6]

Interscience Tracts on Physics and Astronomy, No. 4, Interscience Publishers, Inc., New York, 1957.  Google Scholar

[7]

Math. Ann., 328 (2004), 545-583. doi: 10.1007/s00208-003-0493-y.  Google Scholar

[8]

Trans. Amer. Math. Soc., 361 (2009), 653-669. doi: 10.1090/S0002-9947-08-04684-9.  Google Scholar

[9]

Mem. Amer. Math. Soc., 166 (2003), viii+114.  Google Scholar

[10]

Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.  Google Scholar

[11]

Operator Theory: Advances and Applications, 169, Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[12]

Arch. Math. (Basel), 91 (2008), 178-186. doi: 10.1007/s00013-008-2621-0.  Google Scholar

[13]

Math. Ann., 336 (2006), 747-801. doi: 10.1007/s00208-005-0742-3.  Google Scholar

[14]

Fourth edition, Elektrodynamik der Kontinua [Electrodynamics of continua], Translated from the second Russian edition by S. L. Drechsler, Translation edited by Gerd Lehmann, With a foreword by P. Ziesche and Lehmann, Akademie-Verlag, Berlin, 1985,  Google Scholar

[15]

in "Miniconference on Operator Theory and Partial Differential Equations" (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, (1986), 210-231.  Google Scholar

[16]

Trans. Amer. Math. Soc., 361 (2009), 3125-3157. doi: 10.1090/S0002-9947-08-04827-7.  Google Scholar

[17]

Math. Z., 244 (2003), 651-688.  Google Scholar

[18]

in "Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., (1967), 288-307.  Google Scholar

[19]

Amer. J. Math., 91 (1969), 889-920.  Google Scholar

[20]

Amer. J. Math., 93 (1971), 299-309.  Google Scholar

[21]

Pergamon Press, Oxford-New York-Paris, 1965.  Google Scholar

[22]

Math. Ann., 319 (2001), 735-758. doi: 10.1007/PL00004457.  Google Scholar

[23]

J. Math. Phys., 24 (1983), 2860-2864. doi: 10.1063/1.525667.  Google Scholar

show all references

References:
[1]

in "Nonlinear Elliptic and Parabolic Problems," Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, (2005), 1-15. doi: 10.1007/3-7643-7385-7_1.  Google Scholar

[2]

Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 141-157. doi: 10.3934/dcdss.2010.3.141.  Google Scholar

[3]

Funkcial. Ekvac., 47 (2004), 361-394. doi: 10.1619/fesi.47.361.  Google Scholar

[4]

Math. Methods Appl. Sci., 20 (1997), 737-744. doi: 10.1002/(SICI)1099-1476(199706)20:9<737::AID-MMA863>3.3.CO;2-9.  Google Scholar

[5]

J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.  Google Scholar

[6]

Interscience Tracts on Physics and Astronomy, No. 4, Interscience Publishers, Inc., New York, 1957.  Google Scholar

[7]

Math. Ann., 328 (2004), 545-583. doi: 10.1007/s00208-003-0493-y.  Google Scholar

[8]

Trans. Amer. Math. Soc., 361 (2009), 653-669. doi: 10.1090/S0002-9947-08-04684-9.  Google Scholar

[9]

Mem. Amer. Math. Soc., 166 (2003), viii+114.  Google Scholar

[10]

Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.  Google Scholar

[11]

Operator Theory: Advances and Applications, 169, Birkhäuser Verlag, Basel, 2006. doi: 10.1007/3-7643-7698-8.  Google Scholar

[12]

Arch. Math. (Basel), 91 (2008), 178-186. doi: 10.1007/s00013-008-2621-0.  Google Scholar

[13]

Math. Ann., 336 (2006), 747-801. doi: 10.1007/s00208-005-0742-3.  Google Scholar

[14]

Fourth edition, Elektrodynamik der Kontinua [Electrodynamics of continua], Translated from the second Russian edition by S. L. Drechsler, Translation edited by Gerd Lehmann, With a foreword by P. Ziesche and Lehmann, Akademie-Verlag, Berlin, 1985,  Google Scholar

[15]

in "Miniconference on Operator Theory and Partial Differential Equations" (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, (1986), 210-231.  Google Scholar

[16]

Trans. Amer. Math. Soc., 361 (2009), 3125-3157. doi: 10.1090/S0002-9947-08-04827-7.  Google Scholar

[17]

Math. Z., 244 (2003), 651-688.  Google Scholar

[18]

in "Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., (1967), 288-307.  Google Scholar

[19]

Amer. J. Math., 91 (1969), 889-920.  Google Scholar

[20]

Amer. J. Math., 93 (1971), 299-309.  Google Scholar

[21]

Pergamon Press, Oxford-New York-Paris, 1965.  Google Scholar

[22]

Math. Ann., 319 (2001), 735-758. doi: 10.1007/PL00004457.  Google Scholar

[23]

J. Math. Phys., 24 (1983), 2860-2864. doi: 10.1063/1.525667.  Google Scholar

[1]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[2]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[3]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[5]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[6]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[7]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[8]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[9]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[10]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[15]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[16]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[17]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[18]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[19]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[20]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]