Advanced Search
Article Contents
Article Contents

$H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions

Abstract Related Papers Cited by
  • In this paper we prove that the $L^p$ realisation of a system of Laplace operators subjected to mixed first and zero order boundary conditions admits a bounded $H^{\infty}$-calculus. Furthermore, we apply this result to the Magnetohydrodynamic equation with perfectly conducting wall condition.
    Mathematics Subject Classification: Primary: 35K51; Secondary: 76W05.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Abels, Bounded imaginary powers and $H_\infty$-calculus of the Stokes operator in unbounded domains, in "Nonlinear Elliptic and Parabolic Problems," Progr. Nonlinear Differential Equations Appl., 64, Birkhäuser, Basel, (2005), 1-15.doi: 10.1007/3-7643-7385-7_1.


    H. Abels, Nonstationary Stokes system with variable viscosity in bounded and unbounded domains, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 141-157.doi: 10.3934/dcdss.2010.3.141.


    T. Akiyama, H. Kasai, Y. Shibata and M. Tsutsumi, On a resolvent estimate of a system of Laplace operators with perfect wall condition, Funkcial. Ekvac., 47 (2004), 361-394.doi: 10.1619/fesi.47.361.


    J. Bolik and W. von Wahl, Estimating $\nablau$ in terms of div $u$, curl $u$ either $(\nu,u)$ or $\nu \times u$ and the topology, Math. Methods Appl. Sci., 20 (1997), 737-744.doi: 10.1002/(SICI)1099-1476(199706)20:9<737::AID-MMA863>3.3.CO;2-9.


    M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with a bounded $H^{\infty}$ functional calculus, J. Austral. Math. Soc. Ser. A, 60 (1996), 51-89.


    T. G. Cowling, "Magnetohydrodynamics," Interscience Tracts on Physics and Astronomy, No. 4, Interscience Publishers, Inc., New York, 1957.


    R. Denk, G. Dore, M. Hieber, J. Prüss and A. Venni, New thoughts on old results of R. T. Seeley, Math. Ann., 328 (2004), 545-583.doi: 10.1007/s00208-003-0493-y.


    E. Dintelmann, M. Geissert and M. Hieber, Strong $L^p$-solutions to the Navier-Stokes flow past moving obstacles: The case of several obstacles and time dependent velocity, Trans. Amer. Math. Soc., 361 (2009), 653-669.doi: 10.1090/S0002-9947-08-04684-9.


    R. Denk, M. Hieber and J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114.


    G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.doi: 10.1007/BF01163654.


    M. Haase, "The Functional Calculus for Sectorial Operators," Operator Theory: Advances and Applications, 169, Birkhäuser Verlag, Basel, 2006.doi: 10.1007/3-7643-7698-8.


    P. C. Kunstmann, $H^{\infty}$-calculus for the Stokes operator on unbounded domains, Arch. Math. (Basel), 91 (2008), 178-186.doi: 10.1007/s00013-008-2621-0.


    N. Kalton, P. Kunstmann and L. Weis, Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators, Math. Ann., 336 (2006), 747-801.doi: 10.1007/s00208-005-0742-3.


    L. D. Landau and E. M. Lifschitz, "Lehrbuch der Theoretischen Physik ('Landau-Lifschitz'), Band VIII," Fourth edition, Elektrodynamik der Kontinua [Electrodynamics of continua], Translated from the second Russian edition by S. L. Drechsler, Translation edited by Gerd Lehmann, With a foreword by P. Ziesche and Lehmann, Akademie-Verlag, Berlin, 1985,


    A. McIntosh, Operators which have an $H_\infty$ functional calculus, in "Miniconference on Operator Theory and Partial Differential Equations" (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, (1986), 210-231.


    M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds, Trans. Amer. Math. Soc., 361 (2009), 3125-3157.doi: 10.1090/S0002-9947-08-04827-7.


    A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on $L_q$-spaces, Math. Z., 244 (2003), 651-688.


    R. T. Seeley, Complex powers of an elliptic operator, in "Singular Integrals" (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., (1967), 288-307.


    R. Seeley, The resolvent of an elliptic boundary problem, Amer. J. Math., 91 (1969), 889-920.


    R. Seeley, Norms and domains of the complex powers $A_Bz$, Amer. J. Math., 93 (1971), 299-309.


    J. A. Shercliff, "A Textbook of Magnetohydrodyamics," Pergamon Press, Oxford-New York-Paris, 1965.


    L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann., 319 (2001), 735-758.doi: 10.1007/PL00004457.


    Z. Yoshida and Y. Giga, On the Ohm-Navier-Stokes system in magnetohydrodynamics, J. Math. Phys., 24 (1983), 2860-2864.doi: 10.1063/1.525667.

  • 加载中

Article Metrics

HTML views() PDF downloads(79) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint