October  2013, 6(5): 1277-1289. doi: 10.3934/dcdss.2013.6.1277

A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations

1. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914

Received  November 2011 Revised  January 2012 Published  March 2013

We construct a Poiseuille type flow which is a bounded entire solution of the nonstationary Navier-Stokes and the Stokes equations in a half space with non-slip boundary condition. Our result in particular implies that there is a nontrivial solution for the Liouville problem under the non-slip boundary condition. A review for cases of the whole space and a slip boundary condition is included.
Citation: Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277
References:
[1]

K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions,, Hokkaido University Preprint Series in Mathematics, 980 (2011).   Google Scholar

[2]

D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations,, Adv. Math., 228 (2011), 2855.  doi: 10.1016/j.aim.2011.07.020.  Google Scholar

[3]

D. Chae, On the Liouville type of theorems with weights for the Navier-Stokes equations and the Euler equations,, Differential Integral Equations, 25 (2012), 403.   Google Scholar

[4]

D. Chae, Note on the incompressible Euler and related equations on $\mathbfR^N$,, Chin. Ann. Math. Ser. B, 30 (2009), 513.  doi: 10.1007/s11401-009-0107-4.  Google Scholar

[5]

C.-C. Chen, R. M. Strain, H.-T. Yau and T.-P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations,, Int. Math. Res. Not. IMRN, 2008 ().  doi: 10.1093/imrn/rnn016.  Google Scholar

[6]

C.-C. Chen, R. M. Strain, T.-P. Tsai and H.-T. Yau, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.  doi: 10.1080/03605300902793956.  Google Scholar

[7]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 775.  doi: 10.1512/iumj.1993.42.42034.  Google Scholar

[8]

E. De Giorgi, "Frontiere Orientate di Misura Minima,", Seminario di Matematica della Scuola Normale Superiore di Pisa, (1961), 1960.   Google Scholar

[9]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Commun. Partial Differential Equations, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[10]

M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations - Asymptotic Behavior of Solutions and Self-Similar Solutions,", Progress in Nonlinear Differential Equations and Their Applications, 79 (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[11]

Y. Giga, A bound for global solutions of semilinear heat equations,, Comm. Math. Phys., 103 (1986), 415.   Google Scholar

[12]

Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[13]

Y. Giga and H. Miura, On vorticity directions near singularities for the Navier-Stokes flows with infinite energy,, Comm. Math. Phys., 303 (2011), 289.  doi: 10.1007/s00220-011-1197-x.  Google Scholar

[14]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monograph in Mathematics, 80 (1984).   Google Scholar

[15]

R. Hamilton, The formation of singularities in the Ricci flow,, in, (1995), 7.   Google Scholar

[16]

P.-Y. Hsu and Y. Maekawa, On nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain,, preprint, (2011).   Google Scholar

[17]

K. Kang, Unbounded normal derivative for the Stokes system near boundary,, Math. Annal., 331 (2005), 87.  doi: 10.1007/s00208-004-0575-5.  Google Scholar

[18]

G. Koch, N. Nadirashvilli, G. Seregin and V. Svěrák, Liouville theorems for the Navier-Stokes equations and applications,, Acta Math., 203 (2009), 83.  doi: 10.1007/s11511-009-0039-6.  Google Scholar

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968).   Google Scholar

[20]

Y. Maekawa, Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit,, preprint, (2011).   Google Scholar

[21]

T. Ohyama, Interior regularity of weak solutions to the time-dependent Navier-Stokes equation,, Proc. Japan Acad., 36 (1960), 273.   Google Scholar

[22]

P. Polácik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations,, Indiana Univ. Math. J., 56 (2007), 879.  doi: 10.1512/iumj.2007.56.2911.  Google Scholar

[23]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Prentice-Hall, (1967).   Google Scholar

[24]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).   Google Scholar

[25]

G. Seregin and V. Šverák, On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations,, Comm. Partial Differential Equations, 34 (2009), 171.  doi: 10.1080/03605300802683687.  Google Scholar

[26]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187.   Google Scholar

[27]

M. Struwe, Geometric evolution problems,, in, 2 (1996), 257.   Google Scholar

show all references

References:
[1]

K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions,, Hokkaido University Preprint Series in Mathematics, 980 (2011).   Google Scholar

[2]

D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations,, Adv. Math., 228 (2011), 2855.  doi: 10.1016/j.aim.2011.07.020.  Google Scholar

[3]

D. Chae, On the Liouville type of theorems with weights for the Navier-Stokes equations and the Euler equations,, Differential Integral Equations, 25 (2012), 403.   Google Scholar

[4]

D. Chae, Note on the incompressible Euler and related equations on $\mathbfR^N$,, Chin. Ann. Math. Ser. B, 30 (2009), 513.  doi: 10.1007/s11401-009-0107-4.  Google Scholar

[5]

C.-C. Chen, R. M. Strain, H.-T. Yau and T.-P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations,, Int. Math. Res. Not. IMRN, 2008 ().  doi: 10.1093/imrn/rnn016.  Google Scholar

[6]

C.-C. Chen, R. M. Strain, T.-P. Tsai and H.-T. Yau, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. II,, Comm. Partial Differential Equations, 34 (2009), 203.  doi: 10.1080/03605300902793956.  Google Scholar

[7]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 775.  doi: 10.1512/iumj.1993.42.42034.  Google Scholar

[8]

E. De Giorgi, "Frontiere Orientate di Misura Minima,", Seminario di Matematica della Scuola Normale Superiore di Pisa, (1961), 1960.   Google Scholar

[9]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Commun. Partial Differential Equations, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[10]

M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations - Asymptotic Behavior of Solutions and Self-Similar Solutions,", Progress in Nonlinear Differential Equations and Their Applications, 79 (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[11]

Y. Giga, A bound for global solutions of semilinear heat equations,, Comm. Math. Phys., 103 (1986), 415.   Google Scholar

[12]

Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[13]

Y. Giga and H. Miura, On vorticity directions near singularities for the Navier-Stokes flows with infinite energy,, Comm. Math. Phys., 303 (2011), 289.  doi: 10.1007/s00220-011-1197-x.  Google Scholar

[14]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monograph in Mathematics, 80 (1984).   Google Scholar

[15]

R. Hamilton, The formation of singularities in the Ricci flow,, in, (1995), 7.   Google Scholar

[16]

P.-Y. Hsu and Y. Maekawa, On nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain,, preprint, (2011).   Google Scholar

[17]

K. Kang, Unbounded normal derivative for the Stokes system near boundary,, Math. Annal., 331 (2005), 87.  doi: 10.1007/s00208-004-0575-5.  Google Scholar

[18]

G. Koch, N. Nadirashvilli, G. Seregin and V. Svěrák, Liouville theorems for the Navier-Stokes equations and applications,, Acta Math., 203 (2009), 83.  doi: 10.1007/s11511-009-0039-6.  Google Scholar

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968).   Google Scholar

[20]

Y. Maekawa, Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit,, preprint, (2011).   Google Scholar

[21]

T. Ohyama, Interior regularity of weak solutions to the time-dependent Navier-Stokes equation,, Proc. Japan Acad., 36 (1960), 273.   Google Scholar

[22]

P. Polácik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations,, Indiana Univ. Math. J., 56 (2007), 879.  doi: 10.1512/iumj.2007.56.2911.  Google Scholar

[23]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Prentice-Hall, (1967).   Google Scholar

[24]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2007).   Google Scholar

[25]

G. Seregin and V. Šverák, On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations,, Comm. Partial Differential Equations, 34 (2009), 171.  doi: 10.1080/03605300802683687.  Google Scholar

[26]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187.   Google Scholar

[27]

M. Struwe, Geometric evolution problems,, in, 2 (1996), 257.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[7]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[15]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[16]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[19]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[20]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]