Citation: |
[1] |
K. Abe and Y. Giga, Analyticity of the Stokes semigroup in spaces of bounded functions, Hokkaido University Preprint Series in Mathematics, 980 (2011). |
[2] |
D. Chae, Liouville type of theorems for the Euler and the Navier-Stokes equations, Adv. Math., 228 (2011), 2855-2868.doi: 10.1016/j.aim.2011.07.020. |
[3] |
D. Chae, On the Liouville type of theorems with weights for the Navier-Stokes equations and the Euler equations, Differential Integral Equations, 25 (2012), 403-416. |
[4] |
D. Chae, Note on the incompressible Euler and related equations on $\mathbfR^N$, Chin. Ann. Math. Ser. B, 30 (2009), 513-526.doi: 10.1007/s11401-009-0107-4. |
[5] |
C.-C. Chen, R. M. Strain, H.-T. Yau and T.-P. Tsai, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations, Int. Math. Res. Not. IMRN, 2008, Art. ID rnn016, 31 pp. doi: 10.1093/imrn/rnn016. |
[6] |
C.-C. Chen, R. M. Strain, T.-P. Tsai and H.-T. Yau, Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. II, Comm. Partial Differential Equations, 34 (2009), 203-232.doi: 10.1080/03605300902793956. |
[7] |
P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.doi: 10.1512/iumj.1993.42.42034. |
[8] |
E. De Giorgi, "Frontiere Orientate di Misura Minima," Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Editrice Tecnico Scientifica, Pisa, 1961. |
[9] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Commun. Partial Differential Equations, 6 (1981), 883-901.doi: 10.1080/03605308108820196. |
[10] |
M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations - Asymptotic Behavior of Solutions and Self-Similar Solutions," Progress in Nonlinear Differential Equations and Their Applications, 79, Birkhäuser Boston, Inc., Boston, MA, 2010.doi: 10.1007/978-0-8176-4651-6. |
[11] |
Y. Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys., 103 (1986), 415-421. |
[12] |
Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.doi: 10.1512/iumj.1987.36.36001. |
[13] |
Y. Giga and H. Miura, On vorticity directions near singularities for the Navier-Stokes flows with infinite energy, Comm. Math. Phys., 303 (2011), 289-300.doi: 10.1007/s00220-011-1197-x. |
[14] |
E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monograph in Mathematics, 80, Birkhäuser Verlag, Basel, 1984. |
[15] |
R. Hamilton, The formation of singularities in the Ricci flow, in "Surveys in differential geometry, Vol II" (Cambridge, MA, 1993), Int. Press, Cambridge, MA, (1995), 7-136. |
[16] |
P.-Y. Hsu and Y. Maekawa, On nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain, preprint, (2011). |
[17] |
K. Kang, Unbounded normal derivative for the Stokes system near boundary, Math. Annal., 331 (2005), 87-109.doi: 10.1007/s00208-004-0575-5. |
[18] |
G. Koch, N. Nadirashvilli, G. Seregin and V. Svěrák, Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203 (2009), 83-105.doi: 10.1007/s11511-009-0039-6. |
[19] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Math. Soc., Providence, RI, 1968. |
[20] |
Y. Maekawa, Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit, preprint, (2011). |
[21] |
T. Ohyama, Interior regularity of weak solutions to the time-dependent Navier-Stokes equation, Proc. Japan Acad., 36 (1960), 273-277. |
[22] |
P. Polácik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.doi: 10.1512/iumj.2007.56.2911. |
[23] |
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. |
[24] |
P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. |
[25] |
G. Seregin and V. Šverák, On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations, Comm. Partial Differential Equations, 34 (2009), 171-201.doi: 10.1080/03605300802683687. |
[26] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195. |
[27] |
M. Struwe, Geometric evolution problems, in "Nonlinear Partial Differential Equations in Differential Geometry" (Park City, UT, 1992), IAS/Park City Math. Ser., 2, Amer. Math. Soc., Providence, RI, (1996), 257-339. |