Advanced Search
Article Contents
Article Contents

On the anisotropic Orlicz spaces applied in the problems of continuum mechanics

Abstract Related Papers Cited by
  • The paper concerns theory of anisotropic Orlicz spaces and its applications in continuum mechanics. Our main motivations are e.g. flow of non-Newtonian fluid and response of inelastic materials with non-standard growth conditions of the Cauchy stress tensor. The set of basic definitions and theorems with proofs is presented. We prove the existence of a weak solutions to the generalized Stokes system. Overview covering recent results in the referred topic is given.
    Mathematics Subject Classification: 35Q35, 46E30.


    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. F. Fournier, "Sobolev Spaces," $2^{nd}$ edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.


    K. Chełmiński and P. Gwiazda, Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory, Math. Methods Appl. Sci., 30 (2007), 1357-1374.doi: 10.1002/mma.844.


    P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with the property of rapid thickening under different stimulus, Mathematical Models & Methods in Applied Sciences, 18 (2008), 1073-1092.doi: 10.1142/S0218202508002954.


    P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian flows with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32 (2008), 103-113.


    P. Gwiazda, A. Świerczewska-Gwiazda and A. WróblewskaGeneralized Stokes system in Orlicz spaces, accepted to DCDS-A.


    P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Mathematical Methods in the Applied Sciences, 33 (2010), 125-137.doi: 10.1002/mma.1155.


    M. A. Krasnosei'skii and Ja. B. Rutickii, "Convex functions and Orlicz Spaces," P. Noordhoff Ltd., Groningen, 1961.


    J. Málek, J. Nečas and M. Růžička, On the non-Newtonian incompressible fluids, Mathematical Models & Methods in Applied Sciences, 3 (1993), 35-63.doi: 10.1142/S0218202593000047.


    J. Musielak, "Orlicz Spaces and Modular Spaces," Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983.


    A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow," Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004.


    R. T. Rockaffellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.


    A. J. M. Spencer, "Theory of Invariants Continuum Physics," (ed. A. C. Eringen), Vol. 1, Academic Press, 1971.


    R. Temam and G. Strang, "Functions of Bounded Deformation," Arch. Rational Mech. Anal., 75 (1980/81), 7-21. doi: 10.1007/BF00284617.


    R. Vodák, The problem $\nabla\cdot v=f$ and singular integrals on Orlicz spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161-173.


    D. Werner, "Funktionalanalysis," Third, revised and extended edition, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-642-21172-0.


    A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., 72 (2010), 4136-4147.doi: 10.1016/j.na.2010.01.045.


    A. WróblewskaExistence results for unsteady flows of nonhomogeneous non-Newtonian incompressible fluids monotonicity methods in generalized Orlicz spaces, MMNS preprint. Available from: http://mmns.mimuw.edu.pl/preprints/2011-015.pdf.

  • 加载中

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint