October  2013, 6(5): 1291-1306. doi: 10.3934/dcdss.2013.6.1291

On the anisotropic Orlicz spaces applied in the problems of continuum mechanics

1. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Received  November 2011 Published  March 2013

The paper concerns theory of anisotropic Orlicz spaces and its applications in continuum mechanics. Our main motivations are e.g. flow of non-Newtonian fluid and response of inelastic materials with non-standard growth conditions of the Cauchy stress tensor. The set of basic definitions and theorems with proofs is presented. We prove the existence of a weak solutions to the generalized Stokes system. Overview covering recent results in the referred topic is given.
Citation: Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291
References:
[1]

R. A. Adams and J. F. Fournier, "Sobolev Spaces,", $2^{nd}$ edition, 140 (2003).   Google Scholar

[2]

K. Chełmiński and P. Gwiazda, Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory,, Math. Methods Appl. Sci., 30 (2007), 1357.  doi: 10.1002/mma.844.  Google Scholar

[3]

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with the property of rapid thickening under different stimulus,, Mathematical Models & Methods in Applied Sciences, 18 (2008), 1073.  doi: 10.1142/S0218202508002954.  Google Scholar

[4]

P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian flows with growth conditions in generalized Orlicz spaces,, Topol. Methods Nonlinear Anal., 32 (2008), 103.   Google Scholar

[5]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Generalized Stokes system in Orlicz spaces,, accepted to DCDS-A., ().   Google Scholar

[6]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids,, Mathematical Methods in the Applied Sciences, 33 (2010), 125.  doi: 10.1002/mma.1155.  Google Scholar

[7]

M. A. Krasnosei'skii and Ja. B. Rutickii, "Convex functions and Orlicz Spaces,", P. Noordhoff Ltd., (1961).   Google Scholar

[8]

J. Málek, J. Nečas and M. Růžička, On the non-Newtonian incompressible fluids,, Mathematical Models & Methods in Applied Sciences, 3 (1993), 35.  doi: 10.1142/S0218202593000047.  Google Scholar

[9]

J. Musielak, "Orlicz Spaces and Modular Spaces,", Lecture Notes in Math., 1034 (1983).   Google Scholar

[10]

A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow,", Oxford Lecture Series in Mathematics and its Applications, 27 (2004).   Google Scholar

[11]

R. T. Rockaffellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[12]

A. J. M. Spencer, "Theory of Invariants Continuum Physics,", (ed. A. C. Eringen), (1971).   Google Scholar

[13]

R. Temam and G. Strang, "Functions of Bounded Deformation,", Arch. Rational Mech. Anal., 75 (): 7.  doi: 10.1007/BF00284617.  Google Scholar

[14]

R. Vodák, The problem $\nabla\cdot v=f$ and singular integrals on Orlicz spaces,, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161.   Google Scholar

[15]

D. Werner, "Funktionalanalysis,", Third, (2000).  doi: 10.1007/978-3-642-21172-0.  Google Scholar

[16]

A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces,, Nonlinear Anal., 72 (2010), 4136.  doi: 10.1016/j.na.2010.01.045.  Google Scholar

[17]

A. Wróblewska, Existence results for unsteady flows of nonhomogeneous non-Newtonian incompressible fluids monotonicity methods in generalized Orlicz spaces,, MMNS preprint. Available from: , (): 2011.   Google Scholar

show all references

References:
[1]

R. A. Adams and J. F. Fournier, "Sobolev Spaces,", $2^{nd}$ edition, 140 (2003).   Google Scholar

[2]

K. Chełmiński and P. Gwiazda, Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory,, Math. Methods Appl. Sci., 30 (2007), 1357.  doi: 10.1002/mma.844.  Google Scholar

[3]

P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with the property of rapid thickening under different stimulus,, Mathematical Models & Methods in Applied Sciences, 18 (2008), 1073.  doi: 10.1142/S0218202508002954.  Google Scholar

[4]

P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian flows with growth conditions in generalized Orlicz spaces,, Topol. Methods Nonlinear Anal., 32 (2008), 103.   Google Scholar

[5]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Generalized Stokes system in Orlicz spaces,, accepted to DCDS-A., ().   Google Scholar

[6]

P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids,, Mathematical Methods in the Applied Sciences, 33 (2010), 125.  doi: 10.1002/mma.1155.  Google Scholar

[7]

M. A. Krasnosei'skii and Ja. B. Rutickii, "Convex functions and Orlicz Spaces,", P. Noordhoff Ltd., (1961).   Google Scholar

[8]

J. Málek, J. Nečas and M. Růžička, On the non-Newtonian incompressible fluids,, Mathematical Models & Methods in Applied Sciences, 3 (1993), 35.  doi: 10.1142/S0218202593000047.  Google Scholar

[9]

J. Musielak, "Orlicz Spaces and Modular Spaces,", Lecture Notes in Math., 1034 (1983).   Google Scholar

[10]

A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow,", Oxford Lecture Series in Mathematics and its Applications, 27 (2004).   Google Scholar

[11]

R. T. Rockaffellar, "Convex Analysis,", Princeton Mathematical Series, (1970).   Google Scholar

[12]

A. J. M. Spencer, "Theory of Invariants Continuum Physics,", (ed. A. C. Eringen), (1971).   Google Scholar

[13]

R. Temam and G. Strang, "Functions of Bounded Deformation,", Arch. Rational Mech. Anal., 75 (): 7.  doi: 10.1007/BF00284617.  Google Scholar

[14]

R. Vodák, The problem $\nabla\cdot v=f$ and singular integrals on Orlicz spaces,, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161.   Google Scholar

[15]

D. Werner, "Funktionalanalysis,", Third, (2000).  doi: 10.1007/978-3-642-21172-0.  Google Scholar

[16]

A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces,, Nonlinear Anal., 72 (2010), 4136.  doi: 10.1016/j.na.2010.01.045.  Google Scholar

[17]

A. Wróblewska, Existence results for unsteady flows of nonhomogeneous non-Newtonian incompressible fluids monotonicity methods in generalized Orlicz spaces,, MMNS preprint. Available from: , (): 2011.   Google Scholar

[1]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[2]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[3]

Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255

[4]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[5]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[6]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 683-693. doi: 10.3934/dcdss.2020037

[7]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146

[8]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[9]

Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks & Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583

[10]

Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719

[11]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[12]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[13]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[14]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[15]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[16]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[17]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[18]

Hailong Ye, Jingxue Yin. Instantaneous shrinking and extinction for a non-Newtonian polytropic filtration equation with orientated convection. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1743-1755. doi: 10.3934/dcdsb.2017083

[19]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure & Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[20]

Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska. Generalized Stokes system in Orlicz spaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2125-2146. doi: 10.3934/dcds.2012.32.2125

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]