\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the anisotropic Orlicz spaces applied in the problems of continuum mechanics

Abstract Related Papers Cited by
  • The paper concerns theory of anisotropic Orlicz spaces and its applications in continuum mechanics. Our main motivations are e.g. flow of non-Newtonian fluid and response of inelastic materials with non-standard growth conditions of the Cauchy stress tensor. The set of basic definitions and theorems with proofs is presented. We prove the existence of a weak solutions to the generalized Stokes system. Overview covering recent results in the referred topic is given.
    Mathematics Subject Classification: 35Q35, 46E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. F. Fournier, "Sobolev Spaces," $2^{nd}$ edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

    [2]

    K. Chełmiński and P. Gwiazda, Convergence of coercive approximations for strictly monotone quasistatic models in inelastic deformation theory, Math. Methods Appl. Sci., 30 (2007), 1357-1374.doi: 10.1002/mma.844.

    [3]

    P. Gwiazda and A. Świerczewska-Gwiazda, On non-Newtonian fluids with the property of rapid thickening under different stimulus, Mathematical Models & Methods in Applied Sciences, 18 (2008), 1073-1092.doi: 10.1142/S0218202508002954.

    [4]

    P. Gwiazda and A. Świerczewska-Gwiazda, On steady non-Newtonian flows with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32 (2008), 103-113.

    [5]

    P. Gwiazda, A. Świerczewska-Gwiazda and A. WróblewskaGeneralized Stokes system in Orlicz spaces, accepted to DCDS-A.

    [6]

    P. Gwiazda, A. Świerczewska-Gwiazda and A. Wróblewska, Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Mathematical Methods in the Applied Sciences, 33 (2010), 125-137.doi: 10.1002/mma.1155.

    [7]

    M. A. Krasnosei'skii and Ja. B. Rutickii, "Convex functions and Orlicz Spaces," P. Noordhoff Ltd., Groningen, 1961.

    [8]

    J. Málek, J. Nečas and M. Růžička, On the non-Newtonian incompressible fluids, Mathematical Models & Methods in Applied Sciences, 3 (1993), 35-63.doi: 10.1142/S0218202593000047.

    [9]

    J. Musielak, "Orlicz Spaces and Modular Spaces," Lecture Notes in Math., 1034, Springer-Verlag, Berlin, 1983.

    [10]

    A. Novotný and I. Straškraba, "Introduction to the Mathematical Theory of Compressible Flow," Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004.

    [11]

    R. T. Rockaffellar, "Convex Analysis," Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970.

    [12]

    A. J. M. Spencer, "Theory of Invariants Continuum Physics," (ed. A. C. Eringen), Vol. 1, Academic Press, 1971.

    [13]

    R. Temam and G. Strang, "Functions of Bounded Deformation," Arch. Rational Mech. Anal., 75 (1980/81), 7-21. doi: 10.1007/BF00284617.

    [14]

    R. Vodák, The problem $\nabla\cdot v=f$ and singular integrals on Orlicz spaces, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 41 (2002), 161-173.

    [15]

    D. Werner, "Funktionalanalysis," Third, revised and extended edition, Springer-Verlag, Berlin, 2000.doi: 10.1007/978-3-642-21172-0.

    [16]

    A. Wróblewska, Steady flow of non-Newtonian fluids-monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., 72 (2010), 4136-4147.doi: 10.1016/j.na.2010.01.045.

    [17]

    A. WróblewskaExistence results for unsteady flows of nonhomogeneous non-Newtonian incompressible fluids monotonicity methods in generalized Orlicz spaces, MMNS preprint. Available from: http://mmns.mimuw.edu.pl/preprints/2011-015.pdf.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return