Citation: |
[1] |
G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements, Inverse Problems, 18 (2002), 1333-1353.doi: 10.1088/0266-5611/18/5/308. |
[2] |
B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5-148. |
[3] |
D. Bucur and N. Varchon, A duality approach for the boundary variation of Neumann problems, SIAM J. Math. Anal., 34 (2002), 460-477.doi: 10.1137/S0036141002389579. |
[4] |
D. Bucur and J. P. Zolésio, $N$-dimensional shape optimization under capacitary constraint, J. Differential Equations, 123 (1995), 504-522.doi: 10.1006/jdeq.1995.1171. |
[5] |
A. Chambolle, A density result in two-dimensional linearized elasticity, and applications, Arch. Ration. Mech. Anal., 167 (2003), 211-233.doi: 10.1007/s00205-002-0240-7. |
[6] |
G. Dal Maso, F. Ebobisse and M. Ponsiglione, A stability result for nonlinear Neumann problems under boundary variations, J. Math. Pures Appl. (9), 82 (2003), 503-532. |
[7] |
G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.doi: 10.1007/s002050100187. |
[8] |
G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization, Math. Models Methods Appl. Sci., 12 (2002), 1773-1799.doi: 10.1142/S0218202502002331. |
[9] |
P. Destuynder and M. Djaoua, Sur une interprétation mathématique de l'intégrale de Rice en th\'eorie de la rupture fragile, Math. Methods Appl. Sci., 3 (1981), 70-87. |
[10] |
A. A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163-198.doi: 10.1098/rsta.1921.0006. |
[11] |
P. Grisvard, "Singularities in Boundary Value Problems,'' Research Notes in Applied Mathematics, 22, Masson, Paris, Springer-Verlag, Berlin, 1992. |
[12] |
D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Math. Models Methods Appl. Sci., 18 (2008), 1529-1569.doi: 10.1142/S0218202508003121. |
[13] |
V. A. Kovtunenko, Shape sensitivity of curvilinear cracks on interface to non-linear perturbations, Z. Angew. Math. Phys., 54 (2003), 410-423.doi: 10.1007/s00033-003-0143-y. |
[14] |
C. Larsen, Epsilon-stable quasi-static brittle fracture evolution, Comm. Pure Appl. Math., 63 (2010), 630-654. |
[15] |
G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity, J. Math. Pures Appl. (9), 95 (2011), 565-584. |
[16] |
G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation, Math. Models Methods Appl. Sci., 21 (2011), 2019-2047. |
[17] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations'' (eds. C. M. Dafermos and E. Feireisl), Handbook of Differential Equations,Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[18] |
A. Mielke, R. Rossi and G. Savaré, $BV$ solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.doi: 10.1051/cocv/2010054. |
[19] |
U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. Math., 3 (1969), 510-585. |
[20] |
M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion, Math. Models Methods Appl. Sci., 18 (2008), 1895-1925.doi: 10.1142/S0218202508003236. |
[21] |
U. Stefanelli, A variational characterization of rate-independent evolution, Math. Nachr., 282 (2009), 1492-1512.doi: 10.1002/mana.200810803. |
[22] |
V. Šverák, On optimal shape design, J. Math. Pures Appl. (9), 72 (1993), 537-551. |
[23] |
R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth, Boll. Unione Mat. Ital., (9), 2 (2009), 1-35. |