October  2013, 6(5): 1315-1322. doi: 10.3934/dcdss.2013.6.1315

On a mapping property of the Oseen operator with rotation

1. 

Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany

Received  August 2011 Revised  November 2011 Published  March 2013

The Oseen problem arises as the linearization of a steady-state Navier-Stokes flow past a translating body. If the body, in addition to the translational motion, is also rotating, the corresponding linearization of the equations of motion, written in a frame attached to the body, yields the Oseen system with extra terms in the momentum equation due to the rotation. In this paper, the effect these rotation terms have on the asymptotic structure at spatial infinity of a solution to the system is studied. A mapping property of the whole space Oseen operator with rotation is identified from which asymptotic properties of a solution can be derived. As an application, an asymptotic expansion of a steady-state, linearized Navier-Stokes flow past a rotating and translating body is established.
Citation: Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315
References:
[1]

R. Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle,, Tohoku Math. J. (2), 58 (2006), 129.   Google Scholar

[2]

R. Farwig and T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscr. Math., 136 (2011), 315.  doi: 10.1007/s00229-011-0479-0.  Google Scholar

[3]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[4]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in, (2002), 653.   Google Scholar

[5]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Amer. Math. Soc., 141 (2013), 573.  doi: 10.1090/S0002-9939-2012-11638-7.  Google Scholar

[6]

G. P. Galdi and M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Ration. Mech. Anal., 200 (2011), 21.  doi: 10.1007/s00205-010-0350-6.  Google Scholar

[7]

M. Kyed, Asymptotic profile of a linearized flow past a rotating body,, to appear in Q. Appl. Math., (2011).   Google Scholar

show all references

References:
[1]

R. Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle,, Tohoku Math. J. (2), 58 (2006), 129.   Google Scholar

[2]

R. Farwig and T. Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle,, Manuscr. Math., 136 (2011), 315.  doi: 10.1007/s00229-011-0479-0.  Google Scholar

[3]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,", Springer Tracts in Natural Philosophy, 38 (1994).  doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[4]

G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, in, (2002), 653.   Google Scholar

[5]

G. P. Galdi and M. Kyed, A simple proof of $L^q$-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions,, Proc. Amer. Math. Soc., 141 (2013), 573.  doi: 10.1090/S0002-9939-2012-11638-7.  Google Scholar

[6]

G. P. Galdi and M. Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable,, Arch. Ration. Mech. Anal., 200 (2011), 21.  doi: 10.1007/s00205-010-0350-6.  Google Scholar

[7]

M. Kyed, Asymptotic profile of a linearized flow past a rotating body,, to appear in Q. Appl. Math., (2011).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[6]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[7]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[8]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[9]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[10]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[11]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[12]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[13]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[14]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[15]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[16]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[17]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[18]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]