\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A remark on the Stokes problem in Lorentz spaces

Abstract Related Papers Cited by
  • We study the Stokes initial boundary value problem with an initial data in a Lorentz space. We develop a suitable technique able to solve the problem and to prove the semigroup properties of the resolving operator in the case of the ''limit exponents''. The results are a completion of the ones related to the usual $L^p$-theory, of the ones already known and they are also useful tool to study some questions related to the Navier-Stokes equations.
    Mathematics Subject Classification: 35Q30, 76D05, 76D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.

    [2]

    W. Borchers and T. Miyakawa, Algebraic $L^2$-decay for Navier-Stokes flows in exterior domains, Acta Math., 165 (1990), 189-227.doi: 10.1007/BF02391905.

    [3]

    W. Dan and Y. Shibata, On the $L_q-L_r$ estimates of the Stokes semigroup in a two-dimensional exterior domain, J. Math. Soc. Japan, 51 (1999), 181-207.doi: 10.2969/jmsj/05110181.

    [4]

    W. Desch, M. Hieber and J. Prüss, $L^p$-Theory of the Stokes equation in a half space, J. Evol. Equation, 1 (2001), 115-142.doi: 10.1007/PL00001362.

    [5]

    R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.doi: 10.1007/BF02588049.

    [6]

    G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems," Second edition, Springer Monographs in Mathematics, Springer, New York, 2011.doi: 10.1007/978-0-387-09620-9.

    [7]

    G. P. Galdi, P. Maremonti and Y. Zhou, On the Navier-Stokes problem in exterior domains with non decaying initial data, J. Math. Fluid Mech., 14 (2012), 633-652.doi: 10.1007/s00021-011-0083-9.

    [8]

    Y. Giga and H. Sohr, On the Stokes operator in exterior domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103-130.

    [9]

    Y. Giga and H. Sohr, $L^p$ estimates for the Stokes system, Func. Analysis and Related Topics, 102 (1991), 55-67.

    [10]

    R. A. Hunt, On L(p,q) spaces, Enseignement Mathématique (2), 12 (1966), 249-276.

    [11]

    H. Iwashita, $L^q-L^r$estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in $L^q$ spaces, Math. Ann., 285 (1989), 265-288.doi: 10.1007/BF01443518.

    [12]

    H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Commun. in Partial Diff. Eq., 19 (1994), 959-1014.doi: 10.1080/03605309408821042.

    [13]

    P. Maremonti, Some interpolation inequalities involving Stokes operator and first order derivatives, Ann. Mat. Pura Appl. (4), 175 (1998), 59-91.doi: 10.1007/BF01783676.

    [14]

    P. Maremonti, Pointwise asymptotic stability of steady fluid motions, J. Math. Fluid Mech., 11 (2009), 348-382.doi: 10.1007/s00021-007-0262-x.

    [15]

    P. Maremonti, A remark on the Stokes problem with initial data in $L^1$, J. Math. Fluid Mech., 13 (2011), 469-480.doi: 10.1007/s00021-010-0036-8.

    [16]

    P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes equations in exterior domains, J. Math. Sci., 68 (1994), 229-239.doi: 10.1007/BF01249337.

    [17]

    P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains, Annali Scuola Normale Superiore Pisa Cl. Sci. (4), 24 (1997), 395-449.

    [18]

    E. T. Oklander, $L_{pq}$ interpolators and the theorem of Marcinkiewicz, Bull. A. M. S., 72 (1966), 49-53.

    [19]

    C. Simader and E. Sohr, A new approach to the Helmholtz decomposition and the Neuomann problem in $L^q$-spaces for bounded and exterior domains, in "Mathematical Problems Relating to the Navier-Stokes Equation," Ser. Adv. Math. Appl. Sci., 11, World Scientific Publ., River Edge, NJ, 1992.

    [20]

    E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces," Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1990.

    [21]

    V. Šverák and T.-P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows, Commun. Part. Diff. Eq., 25 (2000), 2107-2117.doi: 10.1080/03605300008821579.

    [22]

    H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978.

    [23]

    M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635-675.doi: 10.1007/PL00004418.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return