October  2013, 6(5): 1323-1342. doi: 10.3934/dcdss.2013.6.1323

A remark on the Stokes problem in Lorentz spaces

1. 

Dipartimento di Matematica, Università degli Studi di Napoli, via Vivaldi, 43, I-81100 Caserta, Italy

Received  December 2011 Revised  February 2012 Published  March 2013

We study the Stokes initial boundary value problem with an initial data in a Lorentz space. We develop a suitable technique able to solve the problem and to prove the semigroup properties of the resolving operator in the case of the ''limit exponents''. The results are a completion of the ones related to the usual $L^p$-theory, of the ones already known and they are also useful tool to study some questions related to the Navier-Stokes equations.
Citation: Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

W. Borchers and T. Miyakawa, Algebraic $L^2$-decay for Navier-Stokes flows in exterior domains,, Acta Math., 165 (1990), 189.  doi: 10.1007/BF02391905.  Google Scholar

[3]

W. Dan and Y. Shibata, On the $L_q-L_r$ estimates of the Stokes semigroup in a two-dimensional exterior domain,, J. Math. Soc. Japan, 51 (1999), 181.  doi: 10.2969/jmsj/05110181.  Google Scholar

[4]

W. Desch, M. Hieber and J. Prüss, $L^p$-Theory of the Stokes equation in a half space,, J. Evol. Equation, 1 (2001), 115.  doi: 10.1007/PL00001362.  Google Scholar

[5]

R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains,, Acta Math., 195 (2005), 21.  doi: 10.1007/BF02588049.  Google Scholar

[6]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,", Second edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[7]

G. P. Galdi, P. Maremonti and Y. Zhou, On the Navier-Stokes problem in exterior domains with non decaying initial data,, J. Math. Fluid Mech., 14 (2012), 633.  doi: 10.1007/s00021-011-0083-9.  Google Scholar

[8]

Y. Giga and H. Sohr, On the Stokes operator in exterior domain,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103.   Google Scholar

[9]

Y. Giga and H. Sohr, $L^p$ estimates for the Stokes system,, Func. Analysis and Related Topics, 102 (1991), 55.   Google Scholar

[10]

R. A. Hunt, On L(p,q) spaces,, Enseignement Mathématique (2), 12 (1966), 249.   Google Scholar

[11]

H. Iwashita, $L^q-L^r$estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in $L^q$ spaces,, Math. Ann., 285 (1989), 265.  doi: 10.1007/BF01443518.  Google Scholar

[12]

H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data,, Commun. in Partial Diff. Eq., 19 (1994), 959.  doi: 10.1080/03605309408821042.  Google Scholar

[13]

P. Maremonti, Some interpolation inequalities involving Stokes operator and first order derivatives,, Ann. Mat. Pura Appl. (4), 175 (1998), 59.  doi: 10.1007/BF01783676.  Google Scholar

[14]

P. Maremonti, Pointwise asymptotic stability of steady fluid motions,, J. Math. Fluid Mech., 11 (2009), 348.  doi: 10.1007/s00021-007-0262-x.  Google Scholar

[15]

P. Maremonti, A remark on the Stokes problem with initial data in $L^1$,, J. Math. Fluid Mech., 13 (2011), 469.  doi: 10.1007/s00021-010-0036-8.  Google Scholar

[16]

P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes equations in exterior domains,, J. Math. Sci., 68 (1994), 229.  doi: 10.1007/BF01249337.  Google Scholar

[17]

P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains,, Annali Scuola Normale Superiore Pisa Cl. Sci. (4), 24 (1997), 395.   Google Scholar

[18]

E. T. Oklander, $L_{pq}$ interpolators and the theorem of Marcinkiewicz,, Bull. A. M. S., 72 (1966), 49.   Google Scholar

[19]

C. Simader and E. Sohr, A new approach to the Helmholtz decomposition and the Neuomann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992).   Google Scholar

[20]

E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Mathematical Series, (1990).   Google Scholar

[21]

V. Šverák and T.-P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows,, Commun. Part. Diff. Eq., 25 (2000), 2107.  doi: 10.1080/03605300008821579.  Google Scholar

[22]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Mathematical Library, 18 (1978).   Google Scholar

[23]

M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.  doi: 10.1007/PL00004418.  Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

W. Borchers and T. Miyakawa, Algebraic $L^2$-decay for Navier-Stokes flows in exterior domains,, Acta Math., 165 (1990), 189.  doi: 10.1007/BF02391905.  Google Scholar

[3]

W. Dan and Y. Shibata, On the $L_q-L_r$ estimates of the Stokes semigroup in a two-dimensional exterior domain,, J. Math. Soc. Japan, 51 (1999), 181.  doi: 10.2969/jmsj/05110181.  Google Scholar

[4]

W. Desch, M. Hieber and J. Prüss, $L^p$-Theory of the Stokes equation in a half space,, J. Evol. Equation, 1 (2001), 115.  doi: 10.1007/PL00001362.  Google Scholar

[5]

R. Farwig, H. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains,, Acta Math., 195 (2005), 21.  doi: 10.1007/BF02588049.  Google Scholar

[6]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,", Second edition, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[7]

G. P. Galdi, P. Maremonti and Y. Zhou, On the Navier-Stokes problem in exterior domains with non decaying initial data,, J. Math. Fluid Mech., 14 (2012), 633.  doi: 10.1007/s00021-011-0083-9.  Google Scholar

[8]

Y. Giga and H. Sohr, On the Stokes operator in exterior domain,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 103.   Google Scholar

[9]

Y. Giga and H. Sohr, $L^p$ estimates for the Stokes system,, Func. Analysis and Related Topics, 102 (1991), 55.   Google Scholar

[10]

R. A. Hunt, On L(p,q) spaces,, Enseignement Mathématique (2), 12 (1966), 249.   Google Scholar

[11]

H. Iwashita, $L^q-L^r$estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value problem in $L^q$ spaces,, Math. Ann., 285 (1989), 265.  doi: 10.1007/BF01443518.  Google Scholar

[12]

H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data,, Commun. in Partial Diff. Eq., 19 (1994), 959.  doi: 10.1080/03605309408821042.  Google Scholar

[13]

P. Maremonti, Some interpolation inequalities involving Stokes operator and first order derivatives,, Ann. Mat. Pura Appl. (4), 175 (1998), 59.  doi: 10.1007/BF01783676.  Google Scholar

[14]

P. Maremonti, Pointwise asymptotic stability of steady fluid motions,, J. Math. Fluid Mech., 11 (2009), 348.  doi: 10.1007/s00021-007-0262-x.  Google Scholar

[15]

P. Maremonti, A remark on the Stokes problem with initial data in $L^1$,, J. Math. Fluid Mech., 13 (2011), 469.  doi: 10.1007/s00021-010-0036-8.  Google Scholar

[16]

P. Maremonti and V. A. Solonnikov, An estimate for the solutions of Stokes equations in exterior domains,, J. Math. Sci., 68 (1994), 229.  doi: 10.1007/BF01249337.  Google Scholar

[17]

P. Maremonti and V. A. Solonnikov, On nonstationary Stokes problem in exterior domains,, Annali Scuola Normale Superiore Pisa Cl. Sci. (4), 24 (1997), 395.   Google Scholar

[18]

E. T. Oklander, $L_{pq}$ interpolators and the theorem of Marcinkiewicz,, Bull. A. M. S., 72 (1966), 49.   Google Scholar

[19]

C. Simader and E. Sohr, A new approach to the Helmholtz decomposition and the Neuomann problem in $L^q$-spaces for bounded and exterior domains,, in, 11 (1992).   Google Scholar

[20]

E. M. Stein and G. Weiss, "Introduction to Fourier Analysis on Euclidean Spaces,", Princeton Mathematical Series, (1990).   Google Scholar

[21]

V. Šverák and T.-P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows,, Commun. Part. Diff. Eq., 25 (2000), 2107.  doi: 10.1080/03605300008821579.  Google Scholar

[22]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Mathematical Library, 18 (1978).   Google Scholar

[23]

M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force,, Math. Ann., 317 (2000), 635.  doi: 10.1007/PL00004418.  Google Scholar

[1]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[5]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[6]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[10]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[14]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[15]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[16]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[19]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[20]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]