-
Previous Article
Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains
- DCDS-S Home
- This Issue
-
Next Article
A remark on the Stokes problem in Lorentz spaces
On stability of a capillary liquid down an inclined plane
1. | Dipartimento di Matematica, University of Ferrara, Via Macchiavelli, 35, 44121 Ferrara, Italy |
References:
[1] |
T. B. Benjamin, Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2 (1957), 554-574. |
[2] |
Finn, R., On equations of capillarity, J. Math. Fluid Mech., 3 (2001), 139-151.
doi: 10.1007/PL00000966. |
[3] |
T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, J. Math. Fluid Mech., 7 (2005), 29-71.
doi: 10.1007/s00021-004-0104-z. |
[4] |
M. Padula, On nonlinear stability of MHD equilibrium figures, Adv. Math. Fluid Mech., 2009, 301-331. |
[5] |
M. Padula, On nonlinear stability of linear pinch, Appl. Anal., 90 (2011), 159-192.
doi: 10.1080/00036811.2010.490527. |
[6] |
M. Padula, On stability of a capillary liquid down an inclined plane, preprint n. 341 of Math. Dept. of Ferrara. |
[7] |
Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids," The Macmillan Series in Advanced Mathematics and Theoretical Physics, New York, 1965. |
[8] |
Chia-Shun Yih, Stability of parallel laminar flow with a free surface, Proc. 2nd U.S. Nat. Congr. Appl. Mech., 1954, 623-628. |
show all references
References:
[1] |
T. B. Benjamin, Wave formation in laminar flow down an inclined plane, J. Fluid Mech., 2 (1957), 554-574. |
[2] |
Finn, R., On equations of capillarity, J. Math. Fluid Mech., 3 (2001), 139-151.
doi: 10.1007/PL00000966. |
[3] |
T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion, J. Math. Fluid Mech., 7 (2005), 29-71.
doi: 10.1007/s00021-004-0104-z. |
[4] |
M. Padula, On nonlinear stability of MHD equilibrium figures, Adv. Math. Fluid Mech., 2009, 301-331. |
[5] |
M. Padula, On nonlinear stability of linear pinch, Appl. Anal., 90 (2011), 159-192.
doi: 10.1080/00036811.2010.490527. |
[6] |
M. Padula, On stability of a capillary liquid down an inclined plane, preprint n. 341 of Math. Dept. of Ferrara. |
[7] |
Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids," The Macmillan Series in Advanced Mathematics and Theoretical Physics, New York, 1965. |
[8] |
Chia-Shun Yih, Stability of parallel laminar flow with a free surface, Proc. 2nd U.S. Nat. Congr. Appl. Mech., 1954, 623-628. |
[1] |
W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure and Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247 |
[2] |
D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure and Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197 |
[3] |
Yoshihiro Shibata. Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface. Evolution Equations and Control Theory, 2018, 7 (1) : 117-152. doi: 10.3934/eect.2018007 |
[4] |
Yves Frederix, Giovanni Samaey, Christophe Vandekerckhove, Ting Li, Erik Nies, Dirk Roose. Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 855-874. doi: 10.3934/dcdsb.2009.11.855 |
[5] |
Yaguang Wang, Shiyong Zhu. Blowup of solutions to the thermal boundary layer problem in two-dimensional incompressible heat conducting flow. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3233-3244. doi: 10.3934/cpaa.2020141 |
[6] |
Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103 |
[7] |
Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2145-2157. doi: 10.3934/dcdsb.2014.19.2145 |
[8] |
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 |
[9] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1323-1343. doi: 10.3934/dcdsb.2021092 |
[10] |
Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117 |
[11] |
Wenxiong Chen, Shijie Qi. Direct methods on fractional equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1269-1310. doi: 10.3934/dcds.2019055 |
[12] |
Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431 |
[13] |
Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control and Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020 |
[14] |
Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209 |
[15] |
Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283 |
[16] |
Jesús Ildefonso Díaz. On the free boundary for quenching type parabolic problems via local energy methods. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1799-1814. doi: 10.3934/cpaa.2014.13.1799 |
[17] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
[18] |
Daoyuan Fang, Ting Zhang, Ruizhao Zi. Dispersive effects of the incompressible viscoelastic fluids. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5261-5295. doi: 10.3934/dcds.2018233 |
[19] |
Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003 |
[20] |
Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa. A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9 (4) : 655-668. doi: 10.3934/nhm.2014.9.655 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]