October  2013, 6(5): 1343-1353. doi: 10.3934/dcdss.2013.6.1343

On stability of a capillary liquid down an inclined plane

1. 

Dipartimento di Matematica, University of Ferrara, Via Macchiavelli, 35, 44121 Ferrara, Italy

Received  December 2011 Revised  February 2012 Published  March 2013

We consider capillary laminar fluid motions on an inclined plane and study spatially periodic surface waves with fixed periodicity on the line of maximum slope $\alpha_1$ and in the horizontal direction $\alpha_2$. Actually, we provide a sufficient condition on Reynolds and Weber numbers, and on the inclination angle, named condition (C), in order that the Poiseuille flow $(v_b,p_b,\Gamma_b)$ with upper flat free boundary $\Gamma_b$ and with periodicity conditions on the plane, is nonlinearly stable. Under condition (C), the perturbed surface $\Gamma_t$ is bounded for all time, and the free boundary Poiseuille flow is stable.
Citation: Mariarosaria Padula. On stability of a capillary liquid down an inclined plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1343-1353. doi: 10.3934/dcdss.2013.6.1343
References:
[1]

T. B. Benjamin, Wave formation in laminar flow down an inclined plane,, J. Fluid Mech., 2 (1957), 554.   Google Scholar

[2]

Finn, R., On equations of capillarity,, J. Math. Fluid Mech., 3 (2001), 139.  doi: 10.1007/PL00000966.  Google Scholar

[3]

T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion,, J. Math. Fluid Mech., 7 (2005), 29.  doi: 10.1007/s00021-004-0104-z.  Google Scholar

[4]

M. Padula, On nonlinear stability of MHD equilibrium figures,, Adv. Math. Fluid Mech., (2009), 301.   Google Scholar

[5]

M. Padula, On nonlinear stability of linear pinch,, Appl. Anal., 90 (2011), 159.  doi: 10.1080/00036811.2010.490527.  Google Scholar

[6]

M. Padula, On stability of a capillary liquid down an inclined plane,, preprint n. 341 of Math. Dept. of Ferrara., ().   Google Scholar

[7]

Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids,", The Macmillan Series in Advanced Mathematics and Theoretical Physics, (1965).   Google Scholar

[8]

Chia-Shun Yih, Stability of parallel laminar flow with a free surface,, Proc. 2nd U.S. Nat. Congr. Appl. Mech., (1954), 623.   Google Scholar

show all references

References:
[1]

T. B. Benjamin, Wave formation in laminar flow down an inclined plane,, J. Fluid Mech., 2 (1957), 554.   Google Scholar

[2]

Finn, R., On equations of capillarity,, J. Math. Fluid Mech., 3 (2001), 139.  doi: 10.1007/PL00000966.  Google Scholar

[3]

T. Nishida, Y. Teramoto, H. Yoshihara, Global in time behavior of viscous surface waves: horizontally periodic motion,, J. Math. Fluid Mech., 7 (2005), 29.  doi: 10.1007/s00021-004-0104-z.  Google Scholar

[4]

M. Padula, On nonlinear stability of MHD equilibrium figures,, Adv. Math. Fluid Mech., (2009), 301.   Google Scholar

[5]

M. Padula, On nonlinear stability of linear pinch,, Appl. Anal., 90 (2011), 159.  doi: 10.1080/00036811.2010.490527.  Google Scholar

[6]

M. Padula, On stability of a capillary liquid down an inclined plane,, preprint n. 341 of Math. Dept. of Ferrara., ().   Google Scholar

[7]

Chia-Shun Yih, "Dynamics of Nonhomogeneous Fluids,", The Macmillan Series in Advanced Mathematics and Theoretical Physics, (1965).   Google Scholar

[8]

Chia-Shun Yih, Stability of parallel laminar flow with a free surface,, Proc. 2nd U.S. Nat. Congr. Appl. Mech., (1954), 623.   Google Scholar

[1]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[2]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[3]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[4]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[8]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[9]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[10]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[13]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[14]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[15]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[16]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[19]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[20]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]