October  2013, 6(5): 1355-1369. doi: 10.3934/dcdss.2013.6.1355

Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains

1. 

Sylvie Monniaux - LATP CMI Université Aix-Marseille, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France

Received  November 2011 Revised  December 2011 Published  March 2013

We present here different boundary conditions for the Navier-Stokes equations in bounded Lipschitz domains in $\mathbb{R}^3$, such as Dirichlet, Neumann or Hodge boundary conditions. We first study the linear Stokes operator associated to the boundary conditions. Then we show how the properties of the operator lead to local solutions or global solutions for small initial data.
Citation: Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355
References:
[1]

Paul Deuring, The Stokes resolvent in 3D domains with conical boundary points: Nonregularity in $L^p$-spaces,, Adv. Differential Equations, 6 (2001), 175. Google Scholar

[2]

Paul Deuring and Wolf von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains,, Math. Nachr., 171 (1995), 111. doi: 10.1002/mana.19951710108. Google Scholar

[3]

Eugene Fabes, Osvaldo Mendez and Marius Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains,, J. Funct. Anal., 159 (1998), 323. doi: 10.1006/jfan.1998.3316. Google Scholar

[4]

Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269. Google Scholar

[5]

Yoshikazu Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces,, Math. Z., 178 (1981), 297. doi: 10.1007/BF01214869. Google Scholar

[6]

Yoshikazu Giga and Tetsuro Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem,, Arch. Rational Mech. Anal., 89 (1985), 267. doi: 10.1007/BF00276875. Google Scholar

[7]

Alf Jonsson and Hans Wallin, Function spaces on subsets of $R^n$,, Math. Rep., 2 (1984). Google Scholar

[8]

Jacques-Louis Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs,, J. Math. Soc. Japan, 14 (1962), 233. Google Scholar

[9]

Dorina Mitrea, Marius Mitrea and Sylvie Monniaux, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains,, Commun. Pure Appl. Anal., 7 (2008), 1295. doi: 10.3934/cpaa.2008.7.1295. Google Scholar

[10]

Dorina Mitrea, Marius Mitrea and Michael Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds,, Mem. Amer. Math. Soc., 150 (2001). Google Scholar

[11]

Marius Mitrea and Sylvie Monniaux, The regularity of the Stokes operator and the Fujita-Kato approach to the Navier-Stokes initial value problem in Lipschitz domains,, J. Funct. Anal., 254 (2008), 1522. doi: 10.1016/j.jfa.2007.11.021. Google Scholar

[12]

Marius Mitrea and Sylvie Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Trans. Amer. Math. Soc., 361 (2009), 3125. doi: 10.1090/S0002-9947-08-04827-7. Google Scholar

[13]

Marius Mitrea and Sylvie Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential Integral Equations, 22 (2009), 339. Google Scholar

[14]

Marius Mitrea, Sylvie Monniaux and Matthew Wright, The Stokes operator with Neumann boundary conditions in Lipschitz domains,, J. Math. Sci. (N. Y.), 176 (2011), 409. doi: 10.1007/s10958-011-0400-0. Google Scholar

[15]

Sylvie Monniaux, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains,, J. Funct. Anal., 195 (2002), 1. doi: 10.1006/jfan.2002.3902. Google Scholar

[16]

Sylvie Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme,, Math. Res. Lett., 13 (2006), 455. Google Scholar

[17]

Sylvie Monniaux, Maximal regularity and applications to PDEs,, in, (2009), 247. Google Scholar

[18]

Michael E. Taylor, Incompressible fluid flows on rough domains,, in, 42 (1998), 320. Google Scholar

show all references

References:
[1]

Paul Deuring, The Stokes resolvent in 3D domains with conical boundary points: Nonregularity in $L^p$-spaces,, Adv. Differential Equations, 6 (2001), 175. Google Scholar

[2]

Paul Deuring and Wolf von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains,, Math. Nachr., 171 (1995), 111. doi: 10.1002/mana.19951710108. Google Scholar

[3]

Eugene Fabes, Osvaldo Mendez and Marius Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains,, J. Funct. Anal., 159 (1998), 323. doi: 10.1006/jfan.1998.3316. Google Scholar

[4]

Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I,, Arch. Rational Mech. Anal., 16 (1964), 269. Google Scholar

[5]

Yoshikazu Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces,, Math. Z., 178 (1981), 297. doi: 10.1007/BF01214869. Google Scholar

[6]

Yoshikazu Giga and Tetsuro Miyakawa, Solutions in $L_r$ of the Navier-Stokes initial value problem,, Arch. Rational Mech. Anal., 89 (1985), 267. doi: 10.1007/BF00276875. Google Scholar

[7]

Alf Jonsson and Hans Wallin, Function spaces on subsets of $R^n$,, Math. Rep., 2 (1984). Google Scholar

[8]

Jacques-Louis Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs,, J. Math. Soc. Japan, 14 (1962), 233. Google Scholar

[9]

Dorina Mitrea, Marius Mitrea and Sylvie Monniaux, The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains,, Commun. Pure Appl. Anal., 7 (2008), 1295. doi: 10.3934/cpaa.2008.7.1295. Google Scholar

[10]

Dorina Mitrea, Marius Mitrea and Michael Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds,, Mem. Amer. Math. Soc., 150 (2001). Google Scholar

[11]

Marius Mitrea and Sylvie Monniaux, The regularity of the Stokes operator and the Fujita-Kato approach to the Navier-Stokes initial value problem in Lipschitz domains,, J. Funct. Anal., 254 (2008), 1522. doi: 10.1016/j.jfa.2007.11.021. Google Scholar

[12]

Marius Mitrea and Sylvie Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Trans. Amer. Math. Soc., 361 (2009), 3125. doi: 10.1090/S0002-9947-08-04827-7. Google Scholar

[13]

Marius Mitrea and Sylvie Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential Integral Equations, 22 (2009), 339. Google Scholar

[14]

Marius Mitrea, Sylvie Monniaux and Matthew Wright, The Stokes operator with Neumann boundary conditions in Lipschitz domains,, J. Math. Sci. (N. Y.), 176 (2011), 409. doi: 10.1007/s10958-011-0400-0. Google Scholar

[15]

Sylvie Monniaux, On uniqueness for the Navier-Stokes system in 3D-bounded Lipschitz domains,, J. Funct. Anal., 195 (2002), 1. doi: 10.1006/jfan.2002.3902. Google Scholar

[16]

Sylvie Monniaux, Navier-Stokes equations in arbitrary domains: The Fujita-Kato scheme,, Math. Res. Lett., 13 (2006), 455. Google Scholar

[17]

Sylvie Monniaux, Maximal regularity and applications to PDEs,, in, (2009), 247. Google Scholar

[18]

Michael E. Taylor, Incompressible fluid flows on rough domains,, in, 42 (1998), 320. Google Scholar

[1]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[2]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[3]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[4]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[5]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[6]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[7]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[8]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[9]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[10]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[11]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[12]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[13]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[14]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[15]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[16]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[17]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[18]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[19]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[20]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]