October  2013, 6(5): 1371-1390. doi: 10.3934/dcdss.2013.6.1371

On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow

1. 

Departement of Mathematics, Humboldt University Berlin, Unter den Linden 6, 10099 Berlin, Germany, Germany

Received  November 2011 Revised  March 2012 Published  March 2013

Starting from Prandtl's (1945) turbulence model, we consider two systems of PDEs for the scalar functions $u$ and $k$ which characterize the stationary turbulent pipe-flow. This system is completed by a homogeneous Dirichlet condition on $u$, and homogeneuos Neumann or mixed boundary conditions on $k$, respectively. For these boundary value problems we prove the existence of weak solutions $(u,k)$ such that $k>0$ on a set of positive measure.
Citation: Joachim Naumann, Jörg Wolf. On Prandtl's turbulence model: Existence of weak solutions to the equations of stationary turbulent pipe-flow. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1371-1390. doi: 10.3934/dcdss.2013.6.1371
References:
[1]

G. K. Batchelor, "An Introduction to Fluid Mechanics,", Cambridge Univ. Press, (1967).   Google Scholar

[2]

S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients,, Math. Model. Num. Anal., 31 (1977), 845.   Google Scholar

[3]

P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness,, Nonlinear Anal., 68 (2008), 1462.  doi: 10.1016/j.na.2006.12.040.  Google Scholar

[4]

P.-É. Druet and J. Naumann, On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities,, Ann. Univ. Ferrara, 55 (2009), 67.  doi: 10.1007/s11565-009-0062-8.  Google Scholar

[5]

J. Fröhlich, "Large Eddy Simulation Turbulenter Strömungen,", Teubner Verlag, (2006).   Google Scholar

[6]

T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosities,, Nonlin. Anal., 52 (2003), 1051.  doi: 10.1016/S0362-546X(01)00890-2.  Google Scholar

[7]

M. Jischa, "Konvektiver Impuls-, Wärme- und Stoffaustausch,", Vieweg-Verlag, (1982).   Google Scholar

[8]

B. L. Launder and D. B. Spalding, "Lectures in Mathematical Models of Turbulence,", Academic Press, (1972).   Google Scholar

[9]

J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 413.  doi: 10.1016/j.anihpc.2006.03.011.  Google Scholar

[10]

J. Naumann, Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids,, in, 64 (2005), 373.  doi: 10.1007/3-7643-7385-7_21.  Google Scholar

[11]

J. Naumann, M. Pokorný and J. Wolf, On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating,, Nonlin. Anal. Real World Appl., 13 (2012), 1600.  doi: 10.1016/j.nonrwa.2011.11.018.  Google Scholar

[12]

H. Oertel, "Prandtl-Essentials of Fluid Mechanics,", Third edition, 158 (2010).   Google Scholar

[13]

S. B. Pope, "Turbulent Flows,", Cambridge Univ. Press, (2006).   Google Scholar

[14]

L. Prandtl, Bericht über Untersuchungen zur ausgebildeten Turbulenz,, Zeitschr. angew. Math. Mech., 5 (1925), 136.   Google Scholar

[15]

L. Prandtl, Über die ausgebildete Turbulenz,, in, (1927), 62.   Google Scholar

[16]

L. Prandtl, Über ein neues Formelsystem für die ausgebildete Turbulenz,, Nachr. Akad. Wiss. Göttingen, 1 (1946), 6.   Google Scholar

show all references

References:
[1]

G. K. Batchelor, "An Introduction to Fluid Mechanics,", Cambridge Univ. Press, (1967).   Google Scholar

[2]

S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients,, Math. Model. Num. Anal., 31 (1977), 845.   Google Scholar

[3]

P. Dreyfuss, Results for a turbulent system with unbounded viscosities: Weak formulations, existence of solutions, boundedness and smoothness,, Nonlinear Anal., 68 (2008), 1462.  doi: 10.1016/j.na.2006.12.040.  Google Scholar

[4]

P.-É. Druet and J. Naumann, On the existence of weak solutions to a stationary one-equation RANS model with unbounded eddy viscosities,, Ann. Univ. Ferrara, 55 (2009), 67.  doi: 10.1007/s11565-009-0062-8.  Google Scholar

[5]

J. Fröhlich, "Large Eddy Simulation Turbulenter Strömungen,", Teubner Verlag, (2006).   Google Scholar

[6]

T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosities,, Nonlin. Anal., 52 (2003), 1051.  doi: 10.1016/S0362-546X(01)00890-2.  Google Scholar

[7]

M. Jischa, "Konvektiver Impuls-, Wärme- und Stoffaustausch,", Vieweg-Verlag, (1982).   Google Scholar

[8]

B. L. Launder and D. B. Spalding, "Lectures in Mathematical Models of Turbulence,", Academic Press, (1972).   Google Scholar

[9]

J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 413.  doi: 10.1016/j.anihpc.2006.03.011.  Google Scholar

[10]

J. Naumann, Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids,, in, 64 (2005), 373.  doi: 10.1007/3-7643-7385-7_21.  Google Scholar

[11]

J. Naumann, M. Pokorný and J. Wolf, On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating,, Nonlin. Anal. Real World Appl., 13 (2012), 1600.  doi: 10.1016/j.nonrwa.2011.11.018.  Google Scholar

[12]

H. Oertel, "Prandtl-Essentials of Fluid Mechanics,", Third edition, 158 (2010).   Google Scholar

[13]

S. B. Pope, "Turbulent Flows,", Cambridge Univ. Press, (2006).   Google Scholar

[14]

L. Prandtl, Bericht über Untersuchungen zur ausgebildeten Turbulenz,, Zeitschr. angew. Math. Mech., 5 (1925), 136.   Google Scholar

[15]

L. Prandtl, Über die ausgebildete Turbulenz,, in, (1927), 62.   Google Scholar

[16]

L. Prandtl, Über ein neues Formelsystem für die ausgebildete Turbulenz,, Nachr. Akad. Wiss. Göttingen, 1 (1946), 6.   Google Scholar

[1]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[2]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[6]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]