\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Improvement of some anisotropic regularity criteria for the Navier--Stokes equations

Abstract / Introduction Related Papers Cited by
  • We consider the incompressible Navier--Stokes equations in the entire three-dimensional space. Assuming additional regularity on the components of the vector field $\partial_3$u we show intermediate anisotropic regularity results between the results by Kukavica and Ziane [5] and by Cao and Titi [3]and improve the result from the paper by Penel and Pokorný [9].
    Mathematics Subject Classification: Primary: 35Q30; Secondary: 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$, Chin. Ann. Math. Ser. B, 16 (1995), 407-412.

    [2]

    C. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141-1151.doi: 10.3934/dcds.2010.26.1141.

    [3]

    C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal., 202 (2011), 919-932.doi: 10.1007/s00205-011-0439-6.

    [4]

    L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations, Arch. Ration. Mech. Anal., 169 (2003), 147-157.

    [5]

    I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10 pp.doi: 10.1063/1.2395919.

    [6]

    J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, (French), Acta Math., 63 (1934), 193-248.doi: 10.1007/BF02547354.

    [7]

    J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, in "Applied Nonlinear Analysis," Kluwer/Plenum, New York, (1999), 391-402.

    [8]

    P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity, Appl. Math., 49 (2004), 483-493.doi: 10.1023/B:APOM.0000048124.64244.7e.

    [9]

    P. Penel and M. Pokorný, On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations, J. Math. Fluid Mech., 13 (2011), 341-353.doi: 10.1007/s00021-010-0038-6.

    [10]

    G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Math. Pura Appl. (4), 48 (1959), 173-182.

    [11]

    J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187-195.

    [12]

    Z. Zhang, Z. Yao, M. Lu and L. Ni, Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations, J. Math. Phys., 52 (2011), 053103, 7 pp.doi: 10.1063/1.3589966.

    [13]

    Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514, 11 pp.doi: 10.1063/1.3268589.

    [14]

    Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.doi: 10.1088/0951-7715/23/5/004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return