October  2013, 6(5): 1401-1407. doi: 10.3934/dcdss.2013.6.1401

Improvement of some anisotropic regularity criteria for the Navier--Stokes equations

1. 

Mathématique et Laboratoire SNC, Université du Sud, Toulon-Var, BP 20132, 83957 La Garde Cedex

2. 

Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha 8

Received  November 2011 Revised  February 2012 Published  March 2013

We consider the incompressible Navier--Stokes equations in the entire three-dimensional space. Assuming additional regularity on the components of the vector field $\partial_3$u we show intermediate anisotropic regularity results between the results by Kukavica and Ziane [5] and by Cao and Titi [3]and improve the result from the paper by Penel and Pokorný [9].
Citation: Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401
References:
[1]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$,, Chin. Ann. Math. Ser. B, 16 (1995), 407. Google Scholar

[2]

C. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 26 (2010), 1141. doi: 10.3934/dcds.2010.26.1141. Google Scholar

[3]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Ration. Mech. Anal., 202 (2011), 919. doi: 10.1007/s00205-011-0439-6. Google Scholar

[4]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations,, Arch. Ration. Mech. Anal., 169 (2003), 147. Google Scholar

[5]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2395919. Google Scholar

[6]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, (French), 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[7]

J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component,, in, (1999), 391. Google Scholar

[8]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483. doi: 10.1023/B:APOM.0000048124.64244.7e. Google Scholar

[9]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341. doi: 10.1007/s00021-010-0038-6. Google Scholar

[10]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes,, Ann. Math. Pura Appl. (4), 48 (1959), 173. Google Scholar

[11]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187. Google Scholar

[12]

Z. Zhang, Z. Yao, M. Lu and L. Ni, Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3589966. Google Scholar

[13]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3268589. Google Scholar

[14]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097. doi: 10.1088/0951-7715/23/5/004. Google Scholar

show all references

References:
[1]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$,, Chin. Ann. Math. Ser. B, 16 (1995), 407. Google Scholar

[2]

C. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 26 (2010), 1141. doi: 10.3934/dcds.2010.26.1141. Google Scholar

[3]

C. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Ration. Mech. Anal., 202 (2011), 919. doi: 10.1007/s00205-011-0439-6. Google Scholar

[4]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations,, Arch. Ration. Mech. Anal., 169 (2003), 147. Google Scholar

[5]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2395919. Google Scholar

[6]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, (French), 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[7]

J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component,, in, (1999), 391. Google Scholar

[8]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483. doi: 10.1023/B:APOM.0000048124.64244.7e. Google Scholar

[9]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341. doi: 10.1007/s00021-010-0038-6. Google Scholar

[10]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes,, Ann. Math. Pura Appl. (4), 48 (1959), 173. Google Scholar

[11]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187. Google Scholar

[12]

Z. Zhang, Z. Yao, M. Lu and L. Ni, Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3589966. Google Scholar

[13]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3268589. Google Scholar

[14]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097. doi: 10.1088/0951-7715/23/5/004. Google Scholar

[1]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[2]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[3]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[4]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[5]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[6]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[7]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[8]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[9]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[10]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[11]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[12]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[13]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[14]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[15]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[16]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[17]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[18]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[19]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[20]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]