• Previous Article
    Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    Improvement of some anisotropic regularity criteria for the Navier--Stokes equations
October  2013, 6(5): 1409-1415. doi: 10.3934/dcdss.2013.6.1409

Analytic rates of solutions to the Euler equations

1. 

Department of Mathematical and Design Engineering, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan

Received  November 2011 Revised  April 2012 Published  March 2013

The Cauchy problem of the Euler equations is considered with initial data with possibly less regularity. The time-local existence and the uniqueness of strong solutions were established by Pak-Park, when the initial velocity is in the Besov space $B^1_{\infty, 1}$. By treating non-decaying initial data, we are able to discuss the propagation of almost periodicity. It is also proved that if the initial data are real analytic, then the solutions become necessarily real analytic in space variables with an explicit convergence rate of the radius in Taylor's expansion. This result comes from the calculation of higher order derivatives, inductively.
Citation: Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409
References:
[1]

S. Alinhac and G. Métivier, Propagation de l'analyticité locale pour les solutions de l'équation d'Euler,, Arch. Ration. Mech. Anal., 92 (1986), 287. doi: 10.1007/BF00280434. Google Scholar

[2]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Commun. Math. Phys., 94 (1984), 61. Google Scholar

[3]

J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionneles,, Ann. École Norm. Sup. (4), 26 (1993), 517. Google Scholar

[4]

Y. Giga, A. Mahalov and B. Nicolaenko, The Cauchy problem for the Navier-Stokes equations with spatially almost periodic initial data,, in, 163 (2007), 213. Google Scholar

[5]

Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem,, in, 1, 2, (2003), 549. Google Scholar

[6]

N. M. Günther, Über ein Hauptproblem der Hydrodynamik,, Math. Z., 24 (1926), 448. doi: 10.1007/BF01216794. Google Scholar

[7]

C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 33 (1969), 386. Google Scholar

[8]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbbR^3$,, J. Funct. Anal., 9 (1972), 296. Google Scholar

[9]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[10]

I. Kukavica and V. Vicol, On the radius of analyticity of solutions to the three-dimensional Euler equations,, Proc. Amer. Math. Soc., 137 (2009), 669. doi: 10.1090/S0002-9939-08-09693-7. Google Scholar

[11]

H. Miura and O. Sawada, On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations,, Asymptot. Anal., 49 (2006), 1. Google Scholar

[12]

H. C. Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space $B^1_{\infty,1} (\mathbbR^n)$,, Comm. Partial Differential Equations, 29 (2004), 1149. doi: 10.1081/PDE-200033764. Google Scholar

[13]

O. Sawada and R. Takada, On the analyticity and the almost periodicity of the solution to the Euler equations with non-decaying initial velocity,, J. Funct. Anal., 260 (2011), 2148. doi: 10.1016/j.jfa.2010.12.011. Google Scholar

[14]

H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $\mathbbR^3$,, Trans. Amer. Math. Soc., 157 (1971), 373. Google Scholar

[15]

R. Takada, Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type,, J. Evol. Equ., 8 (2008), 693. doi: 10.1007/s00028-008-0403-6. Google Scholar

[16]

Y. Taniuchi, T. Tashiro and T. Yoneda, On the two-dimensional Euler equations with spatially almost periodic initial data,, J. Math. Fluid Mech., 12 (2010), 594. doi: 10.1007/s00021-009-0304-7. Google Scholar

[17]

H. Triebel, "Theory of Function Spaces,", Monogr. Math., 78 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[18]

M. Vishik, Hydrodynamics in Besov spaces,, Arch. Ration. Mech. Anal., 145 (1998), 197. doi: 10.1007/s002050050128. Google Scholar

[19]

V. Yudovich, Nonstationary flow of an ideal incompressible liquid,, Zh. Vych. Mat., 3 (1963), 1032. Google Scholar

show all references

References:
[1]

S. Alinhac and G. Métivier, Propagation de l'analyticité locale pour les solutions de l'équation d'Euler,, Arch. Ration. Mech. Anal., 92 (1986), 287. doi: 10.1007/BF00280434. Google Scholar

[2]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations,, Commun. Math. Phys., 94 (1984), 61. Google Scholar

[3]

J.-Y. Chemin, Persistance de structures géométriques dans les fluides incompressibles bidimensionneles,, Ann. École Norm. Sup. (4), 26 (1993), 517. Google Scholar

[4]

Y. Giga, A. Mahalov and B. Nicolaenko, The Cauchy problem for the Navier-Stokes equations with spatially almost periodic initial data,, in, 163 (2007), 213. Google Scholar

[5]

Y. Giga and O. Sawada, On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem,, in, 1, 2, (2003), 549. Google Scholar

[6]

N. M. Günther, Über ein Hauptproblem der Hydrodynamik,, Math. Z., 24 (1926), 448. doi: 10.1007/BF01216794. Google Scholar

[7]

C. Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 33 (1969), 386. Google Scholar

[8]

T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbbR^3$,, J. Funct. Anal., 9 (1972), 296. Google Scholar

[9]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[10]

I. Kukavica and V. Vicol, On the radius of analyticity of solutions to the three-dimensional Euler equations,, Proc. Amer. Math. Soc., 137 (2009), 669. doi: 10.1090/S0002-9939-08-09693-7. Google Scholar

[11]

H. Miura and O. Sawada, On the regularizing rate estimates of Koch-Tataru's solution to the Navier-Stokes equations,, Asymptot. Anal., 49 (2006), 1. Google Scholar

[12]

H. C. Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space $B^1_{\infty,1} (\mathbbR^n)$,, Comm. Partial Differential Equations, 29 (2004), 1149. doi: 10.1081/PDE-200033764. Google Scholar

[13]

O. Sawada and R. Takada, On the analyticity and the almost periodicity of the solution to the Euler equations with non-decaying initial velocity,, J. Funct. Anal., 260 (2011), 2148. doi: 10.1016/j.jfa.2010.12.011. Google Scholar

[14]

H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in $\mathbbR^3$,, Trans. Amer. Math. Soc., 157 (1971), 373. Google Scholar

[15]

R. Takada, Local existence and blow-up criterion for the Euler equations in Besov spaces of weak type,, J. Evol. Equ., 8 (2008), 693. doi: 10.1007/s00028-008-0403-6. Google Scholar

[16]

Y. Taniuchi, T. Tashiro and T. Yoneda, On the two-dimensional Euler equations with spatially almost periodic initial data,, J. Math. Fluid Mech., 12 (2010), 594. doi: 10.1007/s00021-009-0304-7. Google Scholar

[17]

H. Triebel, "Theory of Function Spaces,", Monogr. Math., 78 (1983). doi: 10.1007/978-3-0346-0416-1. Google Scholar

[18]

M. Vishik, Hydrodynamics in Besov spaces,, Arch. Ration. Mech. Anal., 145 (1998), 197. doi: 10.1007/s002050050128. Google Scholar

[19]

V. Yudovich, Nonstationary flow of an ideal incompressible liquid,, Zh. Vych. Mat., 3 (1963), 1032. Google Scholar

[1]

Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285

[2]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[3]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

[4]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[5]

Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386

[6]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[7]

Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure & Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221

[8]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[9]

Alain Haraux, Mitsuharu Ôtani. Analyticity and regularity for a class of second order evolution equations. Evolution Equations & Control Theory, 2013, 2 (1) : 101-117. doi: 10.3934/eect.2013.2.101

[10]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[11]

Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems & Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87

[12]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[13]

Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150

[14]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

[15]

Jaeseop Ahn, Jimyeong Kim, Ihyeok Seo. On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 423-439. doi: 10.3934/dcds.2020016

[16]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020044

[17]

Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141

[18]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[19]

M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755

[20]

Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]