\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Long time existence of regular solutions to non-homogeneous Navier-Stokes equations

Abstract Related Papers Cited by
  • We consider the motion of incompressible viscous non-homogene-ous fluid described by the Navier-Stokes equations in a bounded cylinder $\Omega$ under boundary slip conditions. Assume that the $x_3$-axis is the axis of the cylinder. Let $\varrho$ be the density of the fluid, $v$ -- the velocity and $f$ the external force field. Assuming that quantities $\nabla\varrho(0)$, $\partial_{x_3}v(0)$, $\partial_{x_3}f$, $f_3|_{\partial\Omega}$ are sufficiently small in some norms we prove large time regular solutions such that $v\in H^{2+s,1+s/2}(\Omega\times(0,T))$, $\nabla p\in H^{s,s/2}(\Omega\times(0,T))$, $½ < s < 1$ without any restriction on the existence time $T$. The proof is divided into two parts. First an a priori estimate is shown. Next the existence follows from the Leray-Schauder fixed point theorem.
    Mathematics Subject Classification: Primary: 35A01, 35Q30; Secondary: 76D05, 76D03, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. N. Antontzev, A. V. Kazhikhov and V. N. Monakhov, "Boundary Problems for Mechanics of Nonhomogeneous Fluids," (in Russian), Nauka, Novosibirsk, 1983.

    [2]

    O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, "Integral Representation of Functions, and Embedding Theorems," (in Russian), Izdat. "Nauka," Moscow, 1975.

    [3]

    M. Burnat and W. M. Zajączkowski, On local motion of a compressible barotropic viscous fluid with the boundary slip condition, Top. Meth. Nonlin. Anal., 10 (1997), 195-223.

    [4]

    R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space, J. Funct. Anal., 256 (2009), 881-927.doi: 10.1016/j.jfa.2008.11.019.

    [5]

    P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models," Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.

    [6]

    B. Nowakowski and W. M. Zajączkowski, Global existence of solutions to Navier-Stokes equations in cylindrical domains, Appl. Math., 36 (2009), 169-182.doi: 10.4064/am36-2-5.

    [7]

    B. Nowakowski and W. M. Zajączkowski, Global attractor for Navier-Stokes equaitons in cylindrical domains, Appl. Math., 36 (2009), 183-194.doi: 10.4064/am36-2-6.

    [8]

    J. Rencławowicz and W. M. Zajączkowski, Large time regular solutions to the Navier-Stokes equations in cylindrical domains, Top. Meth. Nonlin. Anal., 32 (2008), 69-87.

    [9]

    W. M. Zajączkowski, Global existence of axially symmetric solutions of incompressible Navier-Stokes equations with large angular component of velocity, Colloq. Math., 100 (2004), 243-263.doi: 10.4064/cm100-2-7.

    [10]

    W. M. Zajączkowski, Long time existence of regular solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions, Studia Math., 169 (2005), 243-285.doi: 10.4064/sm169-3-3.

    [11]

    W. M. Zajączkowski, Nonstationary Stokes system in Sobolev-Slobodetski spaces, Math. Ann., (2013).

    [12]

    W. M. Zajączkowski, On global regular solutions to the Navier-Stokes equations in cylindrical domains, Top. Meth. Nonlin. Anal., 37 (2011), 55-65.

    [13]

    W. M. Zajączkowski, Global special regular solutions to the Navier-Stokes equations in a cylindrical domain without the axis of symmetry, Top. Meth. Nonlin. Anal., 24 (2004), 69-105.

    [14]

    W. M. Zajączkowski, Global regular solutions to the Navier-Stokes equations in a cylinder, in "Self-Similar Solutions of Nonlinear PDE," Banach Center Publ., 74, Polish Acad. Sci., Warsaw, (2006), 235-255.doi: 10.4064/bc74-0-15.

    [15]
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return