    October  2013, 6(5): 1427-1455. doi: 10.3934/dcdss.2013.6.1427

## Long time existence of regular solutions to non-homogeneous Navier-Stokes equations

 1 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warsaw, Poland

Received  December 2011 Revised  April 2012 Published  March 2013

We consider the motion of incompressible viscous non-homogene-ous fluid described by the Navier-Stokes equations in a bounded cylinder $\Omega$ under boundary slip conditions. Assume that the $x_3$-axis is the axis of the cylinder. Let $\varrho$ be the density of the fluid, $v$ -- the velocity and $f$ the external force field. Assuming that quantities $\nabla\varrho(0)$, $\partial_{x_3}v(0)$, $\partial_{x_3}f$, $f_3|_{\partial\Omega}$ are sufficiently small in some norms we prove large time regular solutions such that $v\in H^{2+s,1+s/2}(\Omega\times(0,T))$, $\nabla p\in H^{s,s/2}(\Omega\times(0,T))$, $½ < s < 1$ without any restriction on the existence time $T$. The proof is divided into two parts. First an a priori estimate is shown. Next the existence follows from the Leray-Schauder fixed point theorem.
Citation: Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427
##### References:
  S. N. Antontzev, A. V. Kazhikhov and V. N. Monakhov, "Boundary Problems for Mechanics of Nonhomogeneous Fluids,", (in Russian), (1983).   Google Scholar  O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, "Integral Representation of Functions, and Embedding Theorems,", (in Russian), (1975). Google Scholar  M. Burnat and W. M. Zajączkowski, On local motion of a compressible barotropic viscous fluid with the boundary slip condition,, Top. Meth. Nonlin. Anal., 10 (1997), 195. Google Scholar  R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space,, J. Funct. Anal., 256 (2009), 881.  doi: 10.1016/j.jfa.2008.11.019.  Google Scholar  P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, 3 (1996). Google Scholar  B. Nowakowski and W. M. Zajączkowski, Global existence of solutions to Navier-Stokes equations in cylindrical domains,, Appl. Math., 36 (2009), 169.  doi: 10.4064/am36-2-5.  Google Scholar  B. Nowakowski and W. M. Zajączkowski, Global attractor for Navier-Stokes equaitons in cylindrical domains,, Appl. Math., 36 (2009), 183.  doi: 10.4064/am36-2-6.  Google Scholar  J. Rencławowicz and W. M. Zajączkowski, Large time regular solutions to the Navier-Stokes equations in cylindrical domains,, Top. Meth. Nonlin. Anal., 32 (2008), 69. Google Scholar  W. M. Zajączkowski, Global existence of axially symmetric solutions of incompressible Navier-Stokes equations with large angular component of velocity,, Colloq. Math., 100 (2004), 243.  doi: 10.4064/cm100-2-7.  Google Scholar  W. M. Zajączkowski, Long time existence of regular solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions,, Studia Math., 169 (2005), 243.  doi: 10.4064/sm169-3-3.  Google Scholar  W. M. Zajączkowski, Nonstationary Stokes system in Sobolev-Slobodetski spaces,, Math. Ann., (2013).   Google Scholar  W. M. Zajączkowski, On global regular solutions to the Navier-Stokes equations in cylindrical domains,, Top. Meth. Nonlin. Anal., 37 (2011), 55. Google Scholar  W. M. Zajączkowski, Global special regular solutions to the Navier-Stokes equations in a cylindrical domain without the axis of symmetry,, Top. Meth. Nonlin. Anal., 24 (2004), 69. Google Scholar  W. M. Zajączkowski, Global regular solutions to the Navier-Stokes equations in a cylinder,, in, 74 (2006), 235.  doi: 10.4064/bc74-0-15.  Google Scholar  , E. Zadrzyńska and W. M. Zajączkowski,, Nonstationary Stokes system in anisotropic Sobolev spaces, (2013).   Google Scholar

show all references

##### References:
  S. N. Antontzev, A. V. Kazhikhov and V. N. Monakhov, "Boundary Problems for Mechanics of Nonhomogeneous Fluids,", (in Russian), (1983).   Google Scholar  O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, "Integral Representation of Functions, and Embedding Theorems,", (in Russian), (1975). Google Scholar  M. Burnat and W. M. Zajączkowski, On local motion of a compressible barotropic viscous fluid with the boundary slip condition,, Top. Meth. Nonlin. Anal., 10 (1997), 195. Google Scholar  R. Danchin and P. B. Mucha, A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space,, J. Funct. Anal., 256 (2009), 881.  doi: 10.1016/j.jfa.2008.11.019.  Google Scholar  P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, 3 (1996). Google Scholar  B. Nowakowski and W. M. Zajączkowski, Global existence of solutions to Navier-Stokes equations in cylindrical domains,, Appl. Math., 36 (2009), 169.  doi: 10.4064/am36-2-5.  Google Scholar  B. Nowakowski and W. M. Zajączkowski, Global attractor for Navier-Stokes equaitons in cylindrical domains,, Appl. Math., 36 (2009), 183.  doi: 10.4064/am36-2-6.  Google Scholar  J. Rencławowicz and W. M. Zajączkowski, Large time regular solutions to the Navier-Stokes equations in cylindrical domains,, Top. Meth. Nonlin. Anal., 32 (2008), 69. Google Scholar  W. M. Zajączkowski, Global existence of axially symmetric solutions of incompressible Navier-Stokes equations with large angular component of velocity,, Colloq. Math., 100 (2004), 243.  doi: 10.4064/cm100-2-7.  Google Scholar  W. M. Zajączkowski, Long time existence of regular solutions to the Navier-Stokes equations in cylindrical domains under boundary slip conditions,, Studia Math., 169 (2005), 243.  doi: 10.4064/sm169-3-3.  Google Scholar  W. M. Zajączkowski, Nonstationary Stokes system in Sobolev-Slobodetski spaces,, Math. Ann., (2013).   Google Scholar  W. M. Zajączkowski, On global regular solutions to the Navier-Stokes equations in cylindrical domains,, Top. Meth. Nonlin. Anal., 37 (2011), 55. Google Scholar  W. M. Zajączkowski, Global special regular solutions to the Navier-Stokes equations in a cylindrical domain without the axis of symmetry,, Top. Meth. Nonlin. Anal., 24 (2004), 69. Google Scholar  W. M. Zajączkowski, Global regular solutions to the Navier-Stokes equations in a cylinder,, in, 74 (2006), 235.  doi: 10.4064/bc74-0-15.  Google Scholar  , E. Zadrzyńska and W. M. Zajączkowski,, Nonstationary Stokes system in anisotropic Sobolev spaces, (2013).   Google Scholar
  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241  Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267  Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383  Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320  Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081  Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052  Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436  Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272  Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469  Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080  Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242  Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168  Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137  Federico Rodriguez Hertz, Zhiren Wang. On $\epsilon$-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365  Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.233