February  2013, 6(1): 147-165. doi: 10.3934/dcdss.2013.6.147

Crack propagation by a regularization of the principle of local symmetry

1. 

Dipartimento di Matematica, Università degli Studi di Pavia, Via A. Ferrata 1 - 27100 Pavia, Italy

Received  April 2011 Revised  December 2011 Published  October 2012

For planar mixed mode crack propagation in brittle materials many similar criteria have been proposed. In this work the Principle of Local Symmetry together with Griffith Criterion will be the governing equations for the evolution. The Stress Intensity Factors, a crucial ingredient in the theory, will be employed in a 'non-local' (regularized) fashion. We prove existence of a Lipschitz path that satisfies the Principle of Local Symmetry (for the approximated stress intensity factors) and then existence of a $BV$-parametrization that satisfies Griffith Criterion (again for the approximated stress intensity factors).
Citation: Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147
References:
[1]

M. Amestoy and J. B. Leblond, Crack paths in plane situations. II. Detailed form of the expansion of the stress intensity factors, Internat. J. Solids Structures, 29 (1992), 465-501. doi: 10.1016/0020-7683(92)90210-K.

[2]

A. Chambolle, G. A. Francfort and J.-J. Marigo, Revisiting energy release rates in brittle fracture, J. Nonlinear Sci., 20 (2010), 395-424. doi: 10.1007/s00332-010-9061-2.

[3]

A. Chambolle, A. Giacomini and M. Ponsiglione, Crack initiation in elastic bodies, Arch. Ration. Mech. Anal., 188 (2008), 309-349. doi: 10.1007/s00205-007-0080-6.

[4]

B. Cotterell, On brittle fracture paths, Internat. J. Fracture, 1 (1965), 96-103. doi: 10.1007/BF00186747.

[5]

B. Cotterell and J. R. Rice, Slightly curved or kinked cracks, Int. J. Fracture, 16 (1980), 155-169. doi: 10.1007/BF00012619.

[6]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.

[7]

A. Friedman and Y. Liu, Propagation of cracks in elastic media, Arch. Rational Mech. Anal., 136 (1996), 235-290. doi: 10.1007/BF02206556.

[8]

R. V. Goldstein and R. L. Salganik, Brittle fracture of solids with arbitrary cracks, Internat. J. Fracture, 10 (1974), 507-523.

[9]

M. Gosz, J. Dolbow and B. Moran, Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks, Int. J. Solids Struct., 35 (1998), 1763-1783. doi: 10.1016/S0020-7683(97)00132-7.

[10]

P. Grisvard, Singularités en elasticité, Arch. Rational Mech. Anal., 107 (1989), 157-180. doi: 10.1007/BF00286498.

[11]

A. M. Khludnev, V. A. Kovtunenko and A. Tani., On the topological derivative due to kink of a crack with non-penetration. Anti-plane model, J. Math. Pures Appl., 94 (2010), 571-596. doi: 10.1016/j.matpur.2010.06.002.

[12]

G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity, J. Math. Pures Appl., 95 (2011), 565-584. doi: 10.1016/j.matpur.2011.01.001.

[13]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189-206.

[14]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation, Adv. Calc. Var., 3 (2010), 149-212. doi: 10.1515/acv.2010.008.

[15]

G. C. Sih and F. Erdogan, On the crack extension in plates under plane loading and transverse shear, J. Basic Engineering, 85 (1963), 519-527. doi: 10.1115/1.3656897.

[16]

G. J. Williams and P. D. Ewing, Fracture under complex stress - the angled crack problem, Int. J. Fracture, 8 (1972), 441-446. doi: 10.1007/BF00191106.

[17]

M. L. Williams, On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24 (1957), 109-114.

show all references

References:
[1]

M. Amestoy and J. B. Leblond, Crack paths in plane situations. II. Detailed form of the expansion of the stress intensity factors, Internat. J. Solids Structures, 29 (1992), 465-501. doi: 10.1016/0020-7683(92)90210-K.

[2]

A. Chambolle, G. A. Francfort and J.-J. Marigo, Revisiting energy release rates in brittle fracture, J. Nonlinear Sci., 20 (2010), 395-424. doi: 10.1007/s00332-010-9061-2.

[3]

A. Chambolle, A. Giacomini and M. Ponsiglione, Crack initiation in elastic bodies, Arch. Ration. Mech. Anal., 188 (2008), 309-349. doi: 10.1007/s00205-007-0080-6.

[4]

B. Cotterell, On brittle fracture paths, Internat. J. Fracture, 1 (1965), 96-103. doi: 10.1007/BF00186747.

[5]

B. Cotterell and J. R. Rice, Slightly curved or kinked cracks, Int. J. Fracture, 16 (1980), 155-169. doi: 10.1007/BF00012619.

[6]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence," Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.

[7]

A. Friedman and Y. Liu, Propagation of cracks in elastic media, Arch. Rational Mech. Anal., 136 (1996), 235-290. doi: 10.1007/BF02206556.

[8]

R. V. Goldstein and R. L. Salganik, Brittle fracture of solids with arbitrary cracks, Internat. J. Fracture, 10 (1974), 507-523.

[9]

M. Gosz, J. Dolbow and B. Moran, Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks, Int. J. Solids Struct., 35 (1998), 1763-1783. doi: 10.1016/S0020-7683(97)00132-7.

[10]

P. Grisvard, Singularités en elasticité, Arch. Rational Mech. Anal., 107 (1989), 157-180. doi: 10.1007/BF00286498.

[11]

A. M. Khludnev, V. A. Kovtunenko and A. Tani., On the topological derivative due to kink of a crack with non-penetration. Anti-plane model, J. Math. Pures Appl., 94 (2010), 571-596. doi: 10.1016/j.matpur.2010.06.002.

[12]

G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity, J. Math. Pures Appl., 95 (2011), 565-584. doi: 10.1016/j.matpur.2011.01.001.

[13]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189-206.

[14]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation, Adv. Calc. Var., 3 (2010), 149-212. doi: 10.1515/acv.2010.008.

[15]

G. C. Sih and F. Erdogan, On the crack extension in plates under plane loading and transverse shear, J. Basic Engineering, 85 (1963), 519-527. doi: 10.1115/1.3656897.

[16]

G. J. Williams and P. D. Ewing, Fracture under complex stress - the angled crack problem, Int. J. Fracture, 8 (1972), 441-446. doi: 10.1007/BF00191106.

[17]

M. L. Williams, On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24 (1957), 109-114.

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[3]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[4]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[5]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[6]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[7]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[8]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[9]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[10]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[11]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[12]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[13]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[14]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[15]

Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591

[16]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[17]

Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167

[18]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[19]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[20]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]