December  2013, 6(6): 1473-1485. doi: 10.3934/dcdss.2013.6.1473

On the Cosserat model for thin rods made of thermoelastic materials with voids

1. 

Department of Mathematics, University "A.I. Cuza" of Iaşi, 700506 Iaşi, Romania

2. 

Faculty of Mechanical Engineering, Otto-von-Guericke-University, 39106 Magdeburg, Germany

Received  June 2012 Revised  September 2012 Published  April 2013

In this paper we employ a Cosserat model for rod-like bodies and study the governing equations of thin thermoelastic porous rods. We apply the counterpart of Korn's inequality in the three-dimensional elasticity theory to prove existence and uniqueness results concerning the solutions to boundary value problems for thermoelastic porous rods, both in the dynamical theory and in the equilibrium case.
Citation: Mircea Bîrsan, Holm Altenbach. On the Cosserat model for thin rods made of thermoelastic materials with voids. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1473-1485. doi: 10.3934/dcdss.2013.6.1473
References:
[1]

H. Altenbach, K. Naumenko and P. A. Zhilin, A direct approach to the formulation of constitutive equations for rods and shells,, in, (2006), 87.   Google Scholar

[2]

M. Bîrsan, Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells,, J. Elasticity, 90 (2008), 227.  doi: 10.1007/s10659-007-9140-2.  Google Scholar

[3]

M. Bîrsan and H. Altenbach, A mathematical study of the linear theory for orthotropic elastic simple shells,, Math. Meth. Appl. Sci., 33 (2010), 1399.  doi: 10.1002/mma.1253.  Google Scholar

[4]

M. Bîrsan and H. Altenbach, Theory of thin thermoelastic rods made of porous materials,, Arch. Appl. Mech., 81 (2011), 1365.  doi: 10.1007/s00419-010-0490-z.  Google Scholar

[5]

M. Bîrsan and H. Altenbach, The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods,, Meccanica, 47 (2011), 789.  doi: 10.1007/s11012-011-9477-2.  Google Scholar

[6]

M. Bîrsan and T. Bîrsan, An inequality of Cauchy-Schwarz type with application in the theory of elastic rods,, Libertas Mathematica, 31 (2011), 123.   Google Scholar

[7]

H. Brezis, "Analyse Fonctionelle. Théorie et Applications,", (French) [Functional Analysis: Theory and Applications], (1983).   Google Scholar

[8]

G. Capriz, "Continua with Microstructure,", Springer Tracts in Natural Philosophy, 35 (1989).  doi: 10.1007/978-1-4612-3584-2.  Google Scholar

[9]

G. Capriz and P. Podio-Guidugli, Materials with spherical structure,, Arch. Rational Mech. Anal., 75 (1981), 269.  doi: 10.1007/BF00250786.  Google Scholar

[10]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I. Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).   Google Scholar

[11]

P. G. Ciarlet, "Mathematical Elasticity. Vol. III. Theory of Shells,", Studies in Mathematics and its Applications, 29 (2000).   Google Scholar

[12]

P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity,", Springer, (2005).   Google Scholar

[13]

E. Cosserat and F. Cosserat, "Théorie des Corps Déformables,", (French) [Theory of deformable bodies], (1909).   Google Scholar

[14]

S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids,, J. Elasticity, 13 (1983), 125.  doi: 10.1007/BF00041230.  Google Scholar

[15]

M. A. Goodman and S. C. Cowin, A continuum theory for granular materials,, Arch. Rational Mech. Anal., 44 (1972), 249.  doi: 10.1007/BF00284326.  Google Scholar

[16]

A. E. Green and P. M. Naghdi, On thermal effects in the theory of rods,, Int. J. Solids Struct., 15 (1979), 829.  doi: 10.1016/0020-7683(79)90053-2.  Google Scholar

[17]

L. P. Lebedev, M. J. Cloud and V. A. Eremeyev, "Tensor Analysis with Applications in Mechanics,", World Scientific Publishing Co. Pte. Ltd., (2010).  doi: 10.1142/9789814313995.  Google Scholar

[18]

A. I. Lurie, "Theory of Elasticity,", Foundations of Engineering Mechanics, (2005).  doi: 10.1007/978-3-540-26455-2.  Google Scholar

[19]

P. Neff, On Korn's first inequality with non-constant coefficients,, Proc. Roy. Soc. Edinb. A, 132 (2002), 221.  doi: 10.1017/S0308210500001591.  Google Scholar

[20]

P. Neff, A geometrically exact planar Cosserat shell-model with microstructure: Existence of minimizers for zero Cosserat couple modulus,, Math. Models Meth. Appl. Sci., 17 (2007), 363.  doi: 10.1142/S0218202507001954.  Google Scholar

[21]

J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids,, Arch. Rational Mech. Anal., 72 (1979), 175.  doi: 10.1007/BF00249363.  Google Scholar

[22]

G. Panasenko, "Multi-scale Modelling for Structures and Composites,", Springer, (2005).   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[24]

M. B. Rubin, "Cosserat Theories: Shells, Rods, and Points,", Solid Mechanics and Its Applications, 79 (2000).  doi: 10.1007/978-94-015-9379-3.  Google Scholar

[25]

J. G. Simmonds, A simple nonlinear thermodynamic theory of arbitrary elastic beams,, J. Elasticity, 81 (2005), 51.  doi: 10.1007/s10659-005-9003-7.  Google Scholar

[26]

V. A. Svetlitsky, "Statics of Rods,", Foundations of Engineering Mechanics, (2000).   Google Scholar

[27]

D. Tiba and R. Vodák, A general asymptotic model for Lipschitzian curved rods,, Adv. Math. Sci. Appl., 15 (2005), 137.   Google Scholar

[28]

I. I. Vrabie, "$C_0$-Semigroups and Applications,", North-Holland Mathematics Studies, 191 (2003).   Google Scholar

[29]

P. A. Zhilin, Nonlinear theory of thin rods,, in, (2006), 227.   Google Scholar

[30]

P. A. Zhilin, "Applied Mechanics: Theory of Thin Elastic Rods,", (in Russian), (2007).   Google Scholar

show all references

References:
[1]

H. Altenbach, K. Naumenko and P. A. Zhilin, A direct approach to the formulation of constitutive equations for rods and shells,, in, (2006), 87.   Google Scholar

[2]

M. Bîrsan, Inequalities of Korn's type and existence results in the theory of Cosserat elastic shells,, J. Elasticity, 90 (2008), 227.  doi: 10.1007/s10659-007-9140-2.  Google Scholar

[3]

M. Bîrsan and H. Altenbach, A mathematical study of the linear theory for orthotropic elastic simple shells,, Math. Meth. Appl. Sci., 33 (2010), 1399.  doi: 10.1002/mma.1253.  Google Scholar

[4]

M. Bîrsan and H. Altenbach, Theory of thin thermoelastic rods made of porous materials,, Arch. Appl. Mech., 81 (2011), 1365.  doi: 10.1007/s00419-010-0490-z.  Google Scholar

[5]

M. Bîrsan and H. Altenbach, The Korn-type inequality in a Cosserat model for thin thermoelastic porous rods,, Meccanica, 47 (2011), 789.  doi: 10.1007/s11012-011-9477-2.  Google Scholar

[6]

M. Bîrsan and T. Bîrsan, An inequality of Cauchy-Schwarz type with application in the theory of elastic rods,, Libertas Mathematica, 31 (2011), 123.   Google Scholar

[7]

H. Brezis, "Analyse Fonctionelle. Théorie et Applications,", (French) [Functional Analysis: Theory and Applications], (1983).   Google Scholar

[8]

G. Capriz, "Continua with Microstructure,", Springer Tracts in Natural Philosophy, 35 (1989).  doi: 10.1007/978-1-4612-3584-2.  Google Scholar

[9]

G. Capriz and P. Podio-Guidugli, Materials with spherical structure,, Arch. Rational Mech. Anal., 75 (1981), 269.  doi: 10.1007/BF00250786.  Google Scholar

[10]

P. G. Ciarlet, "Mathematical Elasticity, Vol. I. Three-Dimensional Elasticity,", Studies in Mathematics and its Applications, 20 (1988).   Google Scholar

[11]

P. G. Ciarlet, "Mathematical Elasticity. Vol. III. Theory of Shells,", Studies in Mathematics and its Applications, 29 (2000).   Google Scholar

[12]

P. G. Ciarlet, "An Introduction to Differential Geometry with Applications to Elasticity,", Springer, (2005).   Google Scholar

[13]

E. Cosserat and F. Cosserat, "Théorie des Corps Déformables,", (French) [Theory of deformable bodies], (1909).   Google Scholar

[14]

S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids,, J. Elasticity, 13 (1983), 125.  doi: 10.1007/BF00041230.  Google Scholar

[15]

M. A. Goodman and S. C. Cowin, A continuum theory for granular materials,, Arch. Rational Mech. Anal., 44 (1972), 249.  doi: 10.1007/BF00284326.  Google Scholar

[16]

A. E. Green and P. M. Naghdi, On thermal effects in the theory of rods,, Int. J. Solids Struct., 15 (1979), 829.  doi: 10.1016/0020-7683(79)90053-2.  Google Scholar

[17]

L. P. Lebedev, M. J. Cloud and V. A. Eremeyev, "Tensor Analysis with Applications in Mechanics,", World Scientific Publishing Co. Pte. Ltd., (2010).  doi: 10.1142/9789814313995.  Google Scholar

[18]

A. I. Lurie, "Theory of Elasticity,", Foundations of Engineering Mechanics, (2005).  doi: 10.1007/978-3-540-26455-2.  Google Scholar

[19]

P. Neff, On Korn's first inequality with non-constant coefficients,, Proc. Roy. Soc. Edinb. A, 132 (2002), 221.  doi: 10.1017/S0308210500001591.  Google Scholar

[20]

P. Neff, A geometrically exact planar Cosserat shell-model with microstructure: Existence of minimizers for zero Cosserat couple modulus,, Math. Models Meth. Appl. Sci., 17 (2007), 363.  doi: 10.1142/S0218202507001954.  Google Scholar

[21]

J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids,, Arch. Rational Mech. Anal., 72 (1979), 175.  doi: 10.1007/BF00249363.  Google Scholar

[22]

G. Panasenko, "Multi-scale Modelling for Structures and Composites,", Springer, (2005).   Google Scholar

[23]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[24]

M. B. Rubin, "Cosserat Theories: Shells, Rods, and Points,", Solid Mechanics and Its Applications, 79 (2000).  doi: 10.1007/978-94-015-9379-3.  Google Scholar

[25]

J. G. Simmonds, A simple nonlinear thermodynamic theory of arbitrary elastic beams,, J. Elasticity, 81 (2005), 51.  doi: 10.1007/s10659-005-9003-7.  Google Scholar

[26]

V. A. Svetlitsky, "Statics of Rods,", Foundations of Engineering Mechanics, (2000).   Google Scholar

[27]

D. Tiba and R. Vodák, A general asymptotic model for Lipschitzian curved rods,, Adv. Math. Sci. Appl., 15 (2005), 137.   Google Scholar

[28]

I. I. Vrabie, "$C_0$-Semigroups and Applications,", North-Holland Mathematics Studies, 191 (2003).   Google Scholar

[29]

P. A. Zhilin, Nonlinear theory of thin rods,, in, (2006), 227.   Google Scholar

[30]

P. A. Zhilin, "Applied Mechanics: Theory of Thin Elastic Rods,", (in Russian), (2007).   Google Scholar

[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[3]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[8]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[12]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[13]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[14]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[15]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[18]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[19]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[20]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]