December  2013, 6(6): 1507-1524. doi: 10.3934/dcdss.2013.6.1507

Approximation results and subspace correction algorithms for implicit variational inequalities

1. 

Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest

2. 

LMA, Aix-Marseille University, CNRS, UPR 7051, Centrale Marseille, F-13402 Marseille Cedex 20, France

Received  June 2012 Revised  September 2012 Published  April 2013

This paper deals with the mathematical analysis and the subspace approximation of a system of variational inequalities representing a unified approach to several quasistatic contact problems in elasticity. Using an implicit time discretization scheme and some estimates, convergence properties of the incremental solutions and existence results are presented for a class of abstract implicit evolution variational inequalities involving a nonlinear operator. To solve the corresponding semi-discrete and the fully discrete problems, some general subspace correction algorithms are proposed, for which global convergence is analyzed and error estimates are established.
Citation: Lori Badea, Marius Cocou. Approximation results and subspace correction algorithms for implicit variational inequalities. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1507-1524. doi: 10.3934/dcdss.2013.6.1507
References:
[1]

L. Badea, Convergence rate of a multiplicative Schwarz method for strongly nonlinear inequalities, in "Analysis and Optimization of Differential Systems" (eds. V. Barbu, I. Lasiecka, D. Tiba and C. Varsan) (Constanta, 2002), Kluwer Academic Publishers, Boston, MA, (2003), 31-42. Available from: http://imar.ro/~lbadea/pub.html.

[2]

L. Badea, Convergence rate of a Schwarz multilevel method for the constrained minimization of non-quadratic functionals, SIAM J. Numer. Anal., 44 (2006), 449-477. doi: 10.1137/S003614290342995X.

[3]

L. Badea, Schwarz methods for inequalities with contraction operators, J. Comp. Appl. Math., 215 (2008), 196-219. doi: 10.1016/j.cam.2007.04.004.

[4]

L. Badea and R. Krause, One- and two-level Schwarz methods for variational inequalities of the second kind and their application to frictional contact, Numer. Math., 120 (2012), 573-599. doi: 10.1007/s00211-011-0423-y.

[5]

L. Badea and R. Krause, One- and two-level multiplicative Schwarz methods for variational and quasi-variational inequalities of the second kind. Part I - general convergence results, INS Preprint, No. 0804, Institute for Numerical Simulation, University of Bonn, June, 2008.

[6]

A. Capatina and M. Cocou, Internal approximation of quasi-variational inequalities, Numer. Math., 59 (1991), 385-398. doi: 10.1007/BF01385787.

[7]

A. Capatina, M. Cocou and M. Raous, A class of implicit variational inequalities and applications to frictional contact, Math. Meth. Appl. Sci., 32 (2009), 1804-1827. doi: 10.1002/mma.1112.

[8]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.

[9]

M. Cocou, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engrg. Sci., 34 (1996), 783-798. doi: 10.1016/0020-7225(95)00121-2.

[10]

R. Glowinski, "Numerical Methods for Nonlinear Variational Problems," Springer Series in Computational Physics, Springer-Verlag, New York, 1984.

[11]

R. Glowinski, J.-L. Lions and R. Trémolières, "Analyse Numérique des Inéquations Variationnelles," Dunod, Paris, 1976.

[12]

R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. I, Numer. Math., 69 (1994), 167-184.

[13]

R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. II, Numer. Math., 72 (1996), 481-499. doi: 10.1007/s002110050178.

[14]

R. Kornhuber, "Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems," Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1997.

[15]

J. Mandel, A multilevel iterative method for symmetric, positive definite linear complementarity problems, Appl. Math. Opt., 11 (1984), 77-95. doi: 10.1007/BF01442171.

[16]

J. Mandel, Étude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre, C. R. Acad. Sci. Série I Math., 298 (1984), 469-472.

[17]

M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Meth. Appl. Mech. Engrg., 177 (1999), 383-399. doi: 10.1016/S0045-7825(98)00389-2.

[18]

A. Toselli and O. Widlund, "Domains Decomposition Methods - Algorithms and Theory," Springer Series in Computational Mathematics, 34, Springer-Verlag, Berlin, 2005.

show all references

References:
[1]

L. Badea, Convergence rate of a multiplicative Schwarz method for strongly nonlinear inequalities, in "Analysis and Optimization of Differential Systems" (eds. V. Barbu, I. Lasiecka, D. Tiba and C. Varsan) (Constanta, 2002), Kluwer Academic Publishers, Boston, MA, (2003), 31-42. Available from: http://imar.ro/~lbadea/pub.html.

[2]

L. Badea, Convergence rate of a Schwarz multilevel method for the constrained minimization of non-quadratic functionals, SIAM J. Numer. Anal., 44 (2006), 449-477. doi: 10.1137/S003614290342995X.

[3]

L. Badea, Schwarz methods for inequalities with contraction operators, J. Comp. Appl. Math., 215 (2008), 196-219. doi: 10.1016/j.cam.2007.04.004.

[4]

L. Badea and R. Krause, One- and two-level Schwarz methods for variational inequalities of the second kind and their application to frictional contact, Numer. Math., 120 (2012), 573-599. doi: 10.1007/s00211-011-0423-y.

[5]

L. Badea and R. Krause, One- and two-level multiplicative Schwarz methods for variational and quasi-variational inequalities of the second kind. Part I - general convergence results, INS Preprint, No. 0804, Institute for Numerical Simulation, University of Bonn, June, 2008.

[6]

A. Capatina and M. Cocou, Internal approximation of quasi-variational inequalities, Numer. Math., 59 (1991), 385-398. doi: 10.1007/BF01385787.

[7]

A. Capatina, M. Cocou and M. Raous, A class of implicit variational inequalities and applications to frictional contact, Math. Meth. Appl. Sci., 32 (2009), 1804-1827. doi: 10.1002/mma.1112.

[8]

P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.

[9]

M. Cocou, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Int. J. Engrg. Sci., 34 (1996), 783-798. doi: 10.1016/0020-7225(95)00121-2.

[10]

R. Glowinski, "Numerical Methods for Nonlinear Variational Problems," Springer Series in Computational Physics, Springer-Verlag, New York, 1984.

[11]

R. Glowinski, J.-L. Lions and R. Trémolières, "Analyse Numérique des Inéquations Variationnelles," Dunod, Paris, 1976.

[12]

R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. I, Numer. Math., 69 (1994), 167-184.

[13]

R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities. II, Numer. Math., 72 (1996), 481-499. doi: 10.1007/s002110050178.

[14]

R. Kornhuber, "Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems," Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1997.

[15]

J. Mandel, A multilevel iterative method for symmetric, positive definite linear complementarity problems, Appl. Math. Opt., 11 (1984), 77-95. doi: 10.1007/BF01442171.

[16]

J. Mandel, Étude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre, C. R. Acad. Sci. Série I Math., 298 (1984), 469-472.

[17]

M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Meth. Appl. Mech. Engrg., 177 (1999), 383-399. doi: 10.1016/S0045-7825(98)00389-2.

[18]

A. Toselli and O. Widlund, "Domains Decomposition Methods - Algorithms and Theory," Springer Series in Computational Mathematics, 34, Springer-Verlag, Berlin, 2005.

[1]

Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021048

[2]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[3]

Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1791-1801. doi: 10.3934/dcdss.2020105

[4]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure and Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[5]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control and Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[6]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[7]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[8]

Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45

[9]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[10]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems and Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[11]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[12]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[13]

Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010

[14]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial and Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[15]

EL Hassene Osmani, Mounir Haddou, Naceurdine Bensalem. A new relaxation method for optimal control of semilinear elliptic variational inequalities obstacle problems. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021061

[16]

Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022060

[17]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[18]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems and Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

[19]

Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409

[20]

Eunkyoung Ko, Eun Kyoung Lee, R. Shivaji. Multiplicity results for classes of singular problems on an exterior domain. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5153-5166. doi: 10.3934/dcds.2013.33.5153

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]