Citation: |
[1] |
R. C. Batra and J. S. Yang, Saint-Venant's principle for linear elastic porous materials, J. Elasticity, 39 (1995), 265-271.doi: 10.1007/BF00041841. |
[2] |
E. Bulgariu, On the Saint-Venant's problem in microstretch elasticity, Libertas Mathematica, 31 (2011), 147-162. |
[3] |
S. Chiriţă, Saint-Venant's problem for anisotropic circular cylinder, Acta. Mechanica, 34 (1979), 243-250.doi: 10.1007/BF01227988. |
[4] |
S. Chiriţă, Saint-Venant's problem and semi-inverse solutions in linear viscoelasticity, Acta Mechanica, 94 (1992), 221-232.doi: 10.1007/BF01176651. |
[5] |
S. De Cicco and L. Nappa, Torsion and flexure of microstretch elastic circular cylindes, Int. J. Engng. Sci., 35 (1997), 573-583. |
[6] |
S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125-147.doi: 10.1007/BF00041230. |
[7] |
F. Dell'isola and R. C. Batra, Saint-Venant's problem for porous linear elastic materials, J. Elasticity, 47 (1997), 73-81.doi: 10.1023/A:1007478322647. |
[8] |
C. Galeş, On Saint-Venant's problem in micropolar viscoelasticity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 131-148. |
[9] |
I.-D. Ghiba, Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials, European Journal of Mechanics A Solids, 27 (2008), 1060-1074.doi: 10.1016/j.euromechsol.2007.12.008. |
[10] |
I.-D. Ghiba, On the deformation of transversely isotropic porous elastic circular cylinder, Arch. Mech. (Arch. Mech. Stos.), 61 (2009), 407-421. |
[11] |
M. A. Goodman and S. C. Cowin, A Continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249-266.doi: 10.1007/BF00284326. |
[12] |
D. Ieşan, On Saint-Venant's problem, Arch. Rational Mech. Anal., 91 (1986), 363-373.doi: 10.1007/BF00282340. |
[13] |
D. Ieşan, A theory of thermoelastic materials with voids, Acta Mechanica, 60 (1986), 67-89. |
[14] |
D. Ieşan, "Saint-Venant's Problem," Lecture Notes in Mathematics, 1279, Springer-Verlag, Berlin, 1987. |
[15] |
D Ieşan and M. Ciarletta, "Nonclassical Elastic Solids," Pitman Research Notes in Mathematics Series, 293, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. |
[16] |
D. Ieşan and L. Nappa, Extension and bending of microstretch elastic circular cylinders, Int. J. Engng. Sci., 33 (1995), 1139-1151.doi: 10.1016/0020-7225(94)00123-2. |
[17] |
D. Ieşan, "Thermoelastic Models of Continua," Solid Mechanics and its Applications, 118, Kluwer Academic Publishers Group, Dordrecht, 2004. |
[18] |
D. Ieşan and A. Scalia, On the deformation of functionally graded porous elastic cylinder, J. Elasticity, 87 (2007), 147-159.doi: 10.1007/s10659-007-9101-9. |
[19] |
D. Ieşan, Thermal stresses in inhomogeneous porous elastic cylinders, Journal of Thermal Stresses, 30 (2007), 145-164. |
[20] |
D. Ieşan, Thermal effects in orthotropic porous elastic beams, Z. Angew. Math. Phys., 60 (2009), 138-153.doi: 10.1007/s00033-008-7144-9. |
[21] |
D. Ieşan, "Classical and Generalized Models of Elastic Rods," CRC Series: Modern Mechanics and Mathematics, CRC Press, Boca Raton, FL, 2009. |
[22] |
D. Ieşan, Deformation of porous Cosserat elastic bars, Int. J. Solids Struct., 48 (2010), 573-583. |
[23] |
D. Ieşan, Thermal stresses in Chiral elastic beams, J. Thermal Stresses, 34 (2011), 458-487. |
[24] |
J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175-201.doi: 10.1007/BF00249363. |
[25] |
A. Scalia, Extension, bending and torsion of anisotropic microstretch elastic cylinders, Mathematics and Mechanics of Solids, 5 (2000), 31-40.doi: 10.1177/108128650000500103. |