December  2013, 6(6): 1539-1550. doi: 10.3934/dcdss.2013.6.1539

On the thermal stresses in anisotropic porous cylinders

1. 

"Al.I. Cuza" University of Iaşi, Department of Mathematics, Blvd. Carol I, no. 11, 700506 Iaşi, Romania, Romania

Received  June 2012 Revised  September 2012 Published  April 2013

In this paper we study the deformation of right porous cylinders subjected to a prescribed thermal field. We assume that the cylinder is filled by an inhomogeneous anisotropic porous material. In the first part of the paper we study the problem of extension-bending-torsion, when the thermal field is independent of the axial coordinate and then we study the problem of extension-bending-torsion-flexure when the thermal field is considered linear in the axial coordinate. The considered problems are reduced to some generalized plane strain problems in the cross-section of the cylinder. Our analysis shows how the considered thermal fields influence the deformation of the porous cylinders.
Citation: Emilian Bulgariu, Ionel-Dumitrel Ghiba. On the thermal stresses in anisotropic porous cylinders. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1539-1550. doi: 10.3934/dcdss.2013.6.1539
References:
[1]

R. C. Batra and J. S. Yang, Saint-Venant's principle for linear elastic porous materials,, J. Elasticity, 39 (1995), 265. doi: 10.1007/BF00041841. Google Scholar

[2]

E. Bulgariu, On the Saint-Venant's problem in microstretch elasticity,, Libertas Mathematica, 31 (2011), 147. Google Scholar

[3]

S. Chiriţă, Saint-Venant's problem for anisotropic circular cylinder,, Acta. Mechanica, 34 (1979), 243. doi: 10.1007/BF01227988. Google Scholar

[4]

S. Chiriţă, Saint-Venant's problem and semi-inverse solutions in linear viscoelasticity,, Acta Mechanica, 94 (1992), 221. doi: 10.1007/BF01176651. Google Scholar

[5]

S. De Cicco and L. Nappa, Torsion and flexure of microstretch elastic circular cylindes,, Int. J. Engng. Sci., 35 (1997), 573. Google Scholar

[6]

S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids,, J. Elasticity, 13 (1983), 125. doi: 10.1007/BF00041230. Google Scholar

[7]

F. Dell'isola and R. C. Batra, Saint-Venant's problem for porous linear elastic materials,, J. Elasticity, 47 (1997), 73. doi: 10.1023/A:1007478322647. Google Scholar

[8]

C. Galeş, On Saint-Venant's problem in micropolar viscoelasticity,, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 131. Google Scholar

[9]

I.-D. Ghiba, Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials,, European Journal of Mechanics A Solids, 27 (2008), 1060. doi: 10.1016/j.euromechsol.2007.12.008. Google Scholar

[10]

I.-D. Ghiba, On the deformation of transversely isotropic porous elastic circular cylinder,, Arch. Mech. (Arch. Mech. Stos.), 61 (2009), 407. Google Scholar

[11]

M. A. Goodman and S. C. Cowin, A Continuum theory for granular materials,, Arch. Rational Mech. Anal., 44 (1972), 249. doi: 10.1007/BF00284326. Google Scholar

[12]

D. Ieşan, On Saint-Venant's problem,, Arch. Rational Mech. Anal., 91 (1986), 363. doi: 10.1007/BF00282340. Google Scholar

[13]

D. Ieşan, A theory of thermoelastic materials with voids,, Acta Mechanica, 60 (1986), 67. Google Scholar

[14]

D. Ieşan, "Saint-Venant's Problem,", Lecture Notes in Mathematics, 1279 (1987). Google Scholar

[15]

D Ieşan and M. Ciarletta, "Nonclassical Elastic Solids,", Pitman Research Notes in Mathematics Series, 293 (1993). Google Scholar

[16]

D. Ieşan and L. Nappa, Extension and bending of microstretch elastic circular cylinders,, Int. J. Engng. Sci., 33 (1995), 1139. doi: 10.1016/0020-7225(94)00123-2. Google Scholar

[17]

D. Ieşan, "Thermoelastic Models of Continua,", Solid Mechanics and its Applications, 118 (2004). Google Scholar

[18]

D. Ieşan and A. Scalia, On the deformation of functionally graded porous elastic cylinder,, J. Elasticity, 87 (2007), 147. doi: 10.1007/s10659-007-9101-9. Google Scholar

[19]

D. Ieşan, Thermal stresses in inhomogeneous porous elastic cylinders,, Journal of Thermal Stresses, 30 (2007), 145. Google Scholar

[20]

D. Ieşan, Thermal effects in orthotropic porous elastic beams,, Z. Angew. Math. Phys., 60 (2009), 138. doi: 10.1007/s00033-008-7144-9. Google Scholar

[21]

D. Ieşan, "Classical and Generalized Models of Elastic Rods,", CRC Series: Modern Mechanics and Mathematics, (2009). Google Scholar

[22]

D. Ieşan, Deformation of porous Cosserat elastic bars,, Int. J. Solids Struct., 48 (2010), 573. Google Scholar

[23]

D. Ieşan, Thermal stresses in Chiral elastic beams,, J. Thermal Stresses, 34 (2011), 458. Google Scholar

[24]

J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids,, Arch. Rational Mech. Anal., 72 (1979), 175. doi: 10.1007/BF00249363. Google Scholar

[25]

A. Scalia, Extension, bending and torsion of anisotropic microstretch elastic cylinders,, Mathematics and Mechanics of Solids, 5 (2000), 31. doi: 10.1177/108128650000500103. Google Scholar

show all references

References:
[1]

R. C. Batra and J. S. Yang, Saint-Venant's principle for linear elastic porous materials,, J. Elasticity, 39 (1995), 265. doi: 10.1007/BF00041841. Google Scholar

[2]

E. Bulgariu, On the Saint-Venant's problem in microstretch elasticity,, Libertas Mathematica, 31 (2011), 147. Google Scholar

[3]

S. Chiriţă, Saint-Venant's problem for anisotropic circular cylinder,, Acta. Mechanica, 34 (1979), 243. doi: 10.1007/BF01227988. Google Scholar

[4]

S. Chiriţă, Saint-Venant's problem and semi-inverse solutions in linear viscoelasticity,, Acta Mechanica, 94 (1992), 221. doi: 10.1007/BF01176651. Google Scholar

[5]

S. De Cicco and L. Nappa, Torsion and flexure of microstretch elastic circular cylindes,, Int. J. Engng. Sci., 35 (1997), 573. Google Scholar

[6]

S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids,, J. Elasticity, 13 (1983), 125. doi: 10.1007/BF00041230. Google Scholar

[7]

F. Dell'isola and R. C. Batra, Saint-Venant's problem for porous linear elastic materials,, J. Elasticity, 47 (1997), 73. doi: 10.1023/A:1007478322647. Google Scholar

[8]

C. Galeş, On Saint-Venant's problem in micropolar viscoelasticity,, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 131. Google Scholar

[9]

I.-D. Ghiba, Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials,, European Journal of Mechanics A Solids, 27 (2008), 1060. doi: 10.1016/j.euromechsol.2007.12.008. Google Scholar

[10]

I.-D. Ghiba, On the deformation of transversely isotropic porous elastic circular cylinder,, Arch. Mech. (Arch. Mech. Stos.), 61 (2009), 407. Google Scholar

[11]

M. A. Goodman and S. C. Cowin, A Continuum theory for granular materials,, Arch. Rational Mech. Anal., 44 (1972), 249. doi: 10.1007/BF00284326. Google Scholar

[12]

D. Ieşan, On Saint-Venant's problem,, Arch. Rational Mech. Anal., 91 (1986), 363. doi: 10.1007/BF00282340. Google Scholar

[13]

D. Ieşan, A theory of thermoelastic materials with voids,, Acta Mechanica, 60 (1986), 67. Google Scholar

[14]

D. Ieşan, "Saint-Venant's Problem,", Lecture Notes in Mathematics, 1279 (1987). Google Scholar

[15]

D Ieşan and M. Ciarletta, "Nonclassical Elastic Solids,", Pitman Research Notes in Mathematics Series, 293 (1993). Google Scholar

[16]

D. Ieşan and L. Nappa, Extension and bending of microstretch elastic circular cylinders,, Int. J. Engng. Sci., 33 (1995), 1139. doi: 10.1016/0020-7225(94)00123-2. Google Scholar

[17]

D. Ieşan, "Thermoelastic Models of Continua,", Solid Mechanics and its Applications, 118 (2004). Google Scholar

[18]

D. Ieşan and A. Scalia, On the deformation of functionally graded porous elastic cylinder,, J. Elasticity, 87 (2007), 147. doi: 10.1007/s10659-007-9101-9. Google Scholar

[19]

D. Ieşan, Thermal stresses in inhomogeneous porous elastic cylinders,, Journal of Thermal Stresses, 30 (2007), 145. Google Scholar

[20]

D. Ieşan, Thermal effects in orthotropic porous elastic beams,, Z. Angew. Math. Phys., 60 (2009), 138. doi: 10.1007/s00033-008-7144-9. Google Scholar

[21]

D. Ieşan, "Classical and Generalized Models of Elastic Rods,", CRC Series: Modern Mechanics and Mathematics, (2009). Google Scholar

[22]

D. Ieşan, Deformation of porous Cosserat elastic bars,, Int. J. Solids Struct., 48 (2010), 573. Google Scholar

[23]

D. Ieşan, Thermal stresses in Chiral elastic beams,, J. Thermal Stresses, 34 (2011), 458. Google Scholar

[24]

J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids,, Arch. Rational Mech. Anal., 72 (1979), 175. doi: 10.1007/BF00249363. Google Scholar

[25]

A. Scalia, Extension, bending and torsion of anisotropic microstretch elastic cylinders,, Mathematics and Mechanics of Solids, 5 (2000), 31. doi: 10.1177/108128650000500103. Google Scholar

[1]

E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189

[2]

Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917

[3]

Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks & Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177

[4]

Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491

[5]

Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89

[6]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[7]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[8]

Xian Zhang, Vinesh Nishawala, Martin Ostoja-Starzewski. Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects. Evolution Equations & Control Theory, 2019, 8 (1) : 231-246. doi: 10.3934/eect.2019013

[9]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[10]

Hermann Gross, Sebastian Heidenreich, Mark-Alexander Henn, Markus Bär, Andreas Rathsfeld. Modeling aspects to improve the solution of the inverse problem in scatterometry. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 497-519. doi: 10.3934/dcdss.2015.8.497

[11]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[12]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[13]

Jinchuan Zhou, Naihua Xiu, Jein-Shan Chen. Solution properties and error bounds for semi-infinite complementarity problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 99-115. doi: 10.3934/jimo.2013.9.99

[14]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[15]

Steve Rosencrans, Xuefeng Wang, Shan Zhao. Estimating eigenvalues of an anisotropic thermal tensor from transient thermal probe measurements. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5441-5455. doi: 10.3934/dcds.2013.33.5441

[16]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[17]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[18]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[19]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

[20]

Frédéric Sur, Michel Grédiac. Towards deconvolution to enhance the grid method for in-plane strain measurement. Inverse Problems & Imaging, 2014, 8 (1) : 259-291. doi: 10.3934/ipi.2014.8.259

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]