\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the thermal stresses in anisotropic porous cylinders

Abstract Related Papers Cited by
  • In this paper we study the deformation of right porous cylinders subjected to a prescribed thermal field. We assume that the cylinder is filled by an inhomogeneous anisotropic porous material. In the first part of the paper we study the problem of extension-bending-torsion, when the thermal field is independent of the axial coordinate and then we study the problem of extension-bending-torsion-flexure when the thermal field is considered linear in the axial coordinate. The considered problems are reduced to some generalized plane strain problems in the cross-section of the cylinder. Our analysis shows how the considered thermal fields influence the deformation of the porous cylinders.
    Mathematics Subject Classification: 74F05, 74E10, 74E05, 74G05, 35Q80.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. C. Batra and J. S. Yang, Saint-Venant's principle for linear elastic porous materials, J. Elasticity, 39 (1995), 265-271.doi: 10.1007/BF00041841.

    [2]

    E. Bulgariu, On the Saint-Venant's problem in microstretch elasticity, Libertas Mathematica, 31 (2011), 147-162.

    [3]

    S. Chiriţă, Saint-Venant's problem for anisotropic circular cylinder, Acta. Mechanica, 34 (1979), 243-250.doi: 10.1007/BF01227988.

    [4]

    S. Chiriţă, Saint-Venant's problem and semi-inverse solutions in linear viscoelasticity, Acta Mechanica, 94 (1992), 221-232.doi: 10.1007/BF01176651.

    [5]

    S. De Cicco and L. Nappa, Torsion and flexure of microstretch elastic circular cylindes, Int. J. Engng. Sci., 35 (1997), 573-583.

    [6]

    S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125-147.doi: 10.1007/BF00041230.

    [7]

    F. Dell'isola and R. C. Batra, Saint-Venant's problem for porous linear elastic materials, J. Elasticity, 47 (1997), 73-81.doi: 10.1023/A:1007478322647.

    [8]

    C. Galeş, On Saint-Venant's problem in micropolar viscoelasticity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 46 (2000), 131-148.

    [9]

    I.-D. Ghiba, Semi-inverse solution for Saint-Venant's problem in the theory of porous elastic materials, European Journal of Mechanics A Solids, 27 (2008), 1060-1074.doi: 10.1016/j.euromechsol.2007.12.008.

    [10]

    I.-D. Ghiba, On the deformation of transversely isotropic porous elastic circular cylinder, Arch. Mech. (Arch. Mech. Stos.), 61 (2009), 407-421.

    [11]

    M. A. Goodman and S. C. Cowin, A Continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249-266.doi: 10.1007/BF00284326.

    [12]

    D. Ieşan, On Saint-Venant's problem, Arch. Rational Mech. Anal., 91 (1986), 363-373.doi: 10.1007/BF00282340.

    [13]

    D. Ieşan, A theory of thermoelastic materials with voids, Acta Mechanica, 60 (1986), 67-89.

    [14]

    D. Ieşan, "Saint-Venant's Problem," Lecture Notes in Mathematics, 1279, Springer-Verlag, Berlin, 1987.

    [15]

    D Ieşan and M. Ciarletta, "Nonclassical Elastic Solids," Pitman Research Notes in Mathematics Series, 293, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.

    [16]

    D. Ieşan and L. Nappa, Extension and bending of microstretch elastic circular cylinders, Int. J. Engng. Sci., 33 (1995), 1139-1151.doi: 10.1016/0020-7225(94)00123-2.

    [17]

    D. Ieşan, "Thermoelastic Models of Continua," Solid Mechanics and its Applications, 118, Kluwer Academic Publishers Group, Dordrecht, 2004.

    [18]

    D. Ieşan and A. Scalia, On the deformation of functionally graded porous elastic cylinder, J. Elasticity, 87 (2007), 147-159.doi: 10.1007/s10659-007-9101-9.

    [19]

    D. Ieşan, Thermal stresses in inhomogeneous porous elastic cylinders, Journal of Thermal Stresses, 30 (2007), 145-164.

    [20]

    D. Ieşan, Thermal effects in orthotropic porous elastic beams, Z. Angew. Math. Phys., 60 (2009), 138-153.doi: 10.1007/s00033-008-7144-9.

    [21]

    D. Ieşan, "Classical and Generalized Models of Elastic Rods," CRC Series: Modern Mechanics and Mathematics, CRC Press, Boca Raton, FL, 2009.

    [22]

    D. Ieşan, Deformation of porous Cosserat elastic bars, Int. J. Solids Struct., 48 (2010), 573-583.

    [23]

    D. Ieşan, Thermal stresses in Chiral elastic beams, J. Thermal Stresses, 34 (2011), 458-487.

    [24]

    J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175-201.doi: 10.1007/BF00249363.

    [25]

    A. Scalia, Extension, bending and torsion of anisotropic microstretch elastic cylinders, Mathematics and Mechanics of Solids, 5 (2000), 31-40.doi: 10.1177/108128650000500103.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return