-
Previous Article
Dual formulation of a viscoplastic contact problem with unilateral constraint
- DCDS-S Home
- This Issue
-
Next Article
New results on the problem of the stabilization of equilibria for models of electrohydraulic servoactuators
Modeling a hard, thin curvilinear interface
1. | LMA, CNRS UPR 7051, Aix-Marseille University, Centrale Marseille, F 13402 Marseille Cedex 20, France |
2. | Dipartimento di Ingegneria, Universitá di Ferrara, I 44122 Ferrara, Italy |
References:
[1] |
F. Ascione and G. Mancusi, Curve adhesive joints, Composite Structures, 94 (2012), 2657-2664.
doi: 10.1016/j.compstruct.2012.03.024. |
[2] |
Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, Journal of the Mechanics and Physics of Solids, 54 (2006), 708-734.
doi: 10.1016/j.jmps.2005.10.009. |
[3] |
Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity, Mechanics of Materials, 33 (2001), 309-323.
doi: 10.1016/S0167-6636(01)00055-2. |
[4] |
K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part I. Nonlocality and gradient approximations, Journal of the Mechanics and Physics of Solids, 55 (2007), 1-34.
doi: 10.1016/j.jmps.2006.06.004. |
[5] |
K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part II. Effective properties and neutrality, Journal of the Mechanics and Physics of Solids, 55 (2007), 35-63.
doi: 10.1016/j.jmps.2006.06.005. |
[6] |
D. Bigoni and A. Movchan, Statics and dynamics of structural interfaces in elasticity, International Journal of Solids and Structures, 39 (2002), 4843-4865.
doi: 10.1016/S0020-7683(02)00416-X. |
[7] |
N. Challamel and U. A. Girhammar, Boundary-layer effect in composite beams with interlayer slip, Journal of Aerospace Engineering, 24 (2011), 199-209.
doi: 10.1061/(ASCE)AS.1943-5525.0000027. |
[8] |
J. Cognard, R. C. Hcadec, L. Sohier and P. Davies, Analysis of the nonlinear behavior of adhesives in 2 bonded assemblies - comparison of tast and arcan tests, International Journal of Adhesion and Adhesives, 28 (2008), 393-404. |
[9] |
J. Cognard, P. Davies, L. Sohier and R. Créac'hcadec, A study of the non-linear behaviour of adhesively-bonded composite assemblies, Composite Structures, 76 (2006), 34-46.
doi: 10.1016/j.compstruct.2006.06.006. |
[10] |
I. Doghri, "Mechanics of Deformable Solids. Linear, Nonlinear, Analytical and Computational Aspects," Springer-Verlag, Berlin, 2000. |
[11] |
V. A. Duong, A. D. Diaz, S. Chataigner and J.-F. Caron, A layerwise finite element for multilayers with imperfect interfaces, Composite Structures, 93 (2011), 3262-3271.
doi: 10.1016/j.compstruct.2011.05.001. |
[12] |
W. Eckhaus, "Asymptotic Analysis of Singular Perturbations," Studies in Mathematics and its Applications, 9, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[13] |
S. Kumar and J. P. Scanlan, Stress analysis of shaft-tube bonded joints using a variational method, Journal of Adhesion, 86 (2010), 369-394.
doi: 10.1080/00218461003704329. |
[14] |
M. Kumar and Parul, Methods for solving singular perturbation problems arising in science and engineering, Mathematical and Computer Modelling, 54 (2011), 556-575.
doi: 10.1016/j.mcm.2011.02.045. |
[15] |
F. Lebon and R. Rizzoni, Asymptotic analysis of a thin interface: The case involving similar rigidity, International Journal of Engineering Science, 48 (2010), 473-486.
doi: 10.1016/j.ijengsci.2009.12.001. |
[16] |
F. Lebon and R. Rizzoni, Asymptotic behavior of a hard thin linear elastic interphase: An energy approach, International Journal of Solids and Structures, 48 (2011), 441-449.
doi: 10.1016/j.ijsolstr.2010.10.006. |
[17] |
F. Lebon and R. Rizzoni, Asymptotic analysis of an adhesive joint with mismatch strain, European Journal of Mechanics, A Solids, 36 (2012), 1-8.
doi: 10.1016/j.euromechsol.2012.02.005. |
[18] |
F. Lebon, R. Rizzoni and S. Ronel-Idrissi, Numerical analysis of two non-linear soft thin layers, Lecture Notes in Applied and Computational Mechanics, 61 (2012), 299-308.
doi: 10.1007/978-3-642-24638-8_20. |
[19] |
F. Lebon and S. Ronel, First order numerical analysis of linear thin layers, Journal of Applied Mechanics, 74 (2007), 824-828.
doi: 10.1115/1.2424716. |
[20] |
C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive layer, in "Ultrasonic Wave Propagation in Non Homogeneous Media" (eds. M. Duchamp and A. Léger), Springer Proceedings in Physics, 128, Springer, Berlin-Heidelberg, (2009), 99-110.
doi: 10.1007/978-3-540-89105-5_9. |
[21] |
C. Licht and G. Michaille, A modelling of elastic adhesive bonded joints, Advances in Mathematical Sciences and Applications, 7 (1997), 711-740. |
[22] |
R. Rizzoni and F. Lebon, Asymptotic analysis of an adhesive joint with mismatch strain, European Journal of Mechanics, A Solids, 36 (2012), 1-8.
doi: 10.1016/j.euromechsol.2012.02.005. |
[23] |
F. Zaittouni, F. Lebon and C. Licht, Theoretical and numerical study of the behaviour of bonded plates, [Etude théorique et numérique du comportement d'un assemblage de plaques], Comptes Rendus - Mecanique, 330 (2002), 359-364. |
show all references
References:
[1] |
F. Ascione and G. Mancusi, Curve adhesive joints, Composite Structures, 94 (2012), 2657-2664.
doi: 10.1016/j.compstruct.2012.03.024. |
[2] |
Y. Benveniste, A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, Journal of the Mechanics and Physics of Solids, 54 (2006), 708-734.
doi: 10.1016/j.jmps.2005.10.009. |
[3] |
Y. Benveniste and T. Miloh, Imperfect soft and stiff interfaces in two-dimensional elasticity, Mechanics of Materials, 33 (2001), 309-323.
doi: 10.1016/S0167-6636(01)00055-2. |
[4] |
K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part I. Nonlocality and gradient approximations, Journal of the Mechanics and Physics of Solids, 55 (2007), 1-34.
doi: 10.1016/j.jmps.2006.06.004. |
[5] |
K. Bertoldi, D. Bigoni and W. Drugan, Structural interfaces in linear elasticity. Part II. Effective properties and neutrality, Journal of the Mechanics and Physics of Solids, 55 (2007), 35-63.
doi: 10.1016/j.jmps.2006.06.005. |
[6] |
D. Bigoni and A. Movchan, Statics and dynamics of structural interfaces in elasticity, International Journal of Solids and Structures, 39 (2002), 4843-4865.
doi: 10.1016/S0020-7683(02)00416-X. |
[7] |
N. Challamel and U. A. Girhammar, Boundary-layer effect in composite beams with interlayer slip, Journal of Aerospace Engineering, 24 (2011), 199-209.
doi: 10.1061/(ASCE)AS.1943-5525.0000027. |
[8] |
J. Cognard, R. C. Hcadec, L. Sohier and P. Davies, Analysis of the nonlinear behavior of adhesives in 2 bonded assemblies - comparison of tast and arcan tests, International Journal of Adhesion and Adhesives, 28 (2008), 393-404. |
[9] |
J. Cognard, P. Davies, L. Sohier and R. Créac'hcadec, A study of the non-linear behaviour of adhesively-bonded composite assemblies, Composite Structures, 76 (2006), 34-46.
doi: 10.1016/j.compstruct.2006.06.006. |
[10] |
I. Doghri, "Mechanics of Deformable Solids. Linear, Nonlinear, Analytical and Computational Aspects," Springer-Verlag, Berlin, 2000. |
[11] |
V. A. Duong, A. D. Diaz, S. Chataigner and J.-F. Caron, A layerwise finite element for multilayers with imperfect interfaces, Composite Structures, 93 (2011), 3262-3271.
doi: 10.1016/j.compstruct.2011.05.001. |
[12] |
W. Eckhaus, "Asymptotic Analysis of Singular Perturbations," Studies in Mathematics and its Applications, 9, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[13] |
S. Kumar and J. P. Scanlan, Stress analysis of shaft-tube bonded joints using a variational method, Journal of Adhesion, 86 (2010), 369-394.
doi: 10.1080/00218461003704329. |
[14] |
M. Kumar and Parul, Methods for solving singular perturbation problems arising in science and engineering, Mathematical and Computer Modelling, 54 (2011), 556-575.
doi: 10.1016/j.mcm.2011.02.045. |
[15] |
F. Lebon and R. Rizzoni, Asymptotic analysis of a thin interface: The case involving similar rigidity, International Journal of Engineering Science, 48 (2010), 473-486.
doi: 10.1016/j.ijengsci.2009.12.001. |
[16] |
F. Lebon and R. Rizzoni, Asymptotic behavior of a hard thin linear elastic interphase: An energy approach, International Journal of Solids and Structures, 48 (2011), 441-449.
doi: 10.1016/j.ijsolstr.2010.10.006. |
[17] |
F. Lebon and R. Rizzoni, Asymptotic analysis of an adhesive joint with mismatch strain, European Journal of Mechanics, A Solids, 36 (2012), 1-8.
doi: 10.1016/j.euromechsol.2012.02.005. |
[18] |
F. Lebon, R. Rizzoni and S. Ronel-Idrissi, Numerical analysis of two non-linear soft thin layers, Lecture Notes in Applied and Computational Mechanics, 61 (2012), 299-308.
doi: 10.1007/978-3-642-24638-8_20. |
[19] |
F. Lebon and S. Ronel, First order numerical analysis of linear thin layers, Journal of Applied Mechanics, 74 (2007), 824-828.
doi: 10.1115/1.2424716. |
[20] |
C. Licht, A. Léger and F. Lebon, Dynamics of elastic bodies connected by a thin adhesive layer, in "Ultrasonic Wave Propagation in Non Homogeneous Media" (eds. M. Duchamp and A. Léger), Springer Proceedings in Physics, 128, Springer, Berlin-Heidelberg, (2009), 99-110.
doi: 10.1007/978-3-540-89105-5_9. |
[21] |
C. Licht and G. Michaille, A modelling of elastic adhesive bonded joints, Advances in Mathematical Sciences and Applications, 7 (1997), 711-740. |
[22] |
R. Rizzoni and F. Lebon, Asymptotic analysis of an adhesive joint with mismatch strain, European Journal of Mechanics, A Solids, 36 (2012), 1-8.
doi: 10.1016/j.euromechsol.2012.02.005. |
[23] |
F. Zaittouni, F. Lebon and C. Licht, Theoretical and numerical study of the behaviour of bonded plates, [Etude théorique et numérique du comportement d'un assemblage de plaques], Comptes Rendus - Mecanique, 330 (2002), 359-364. |
[1] |
Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks and Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017 |
[2] |
Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443 |
[3] |
Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations and Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011 |
[4] |
Abdessatar Khelifi, Siwar Saidani. Asymptotic behavior of eigenvalues of the Maxwell system in the presence of small changes in the interface of an inclusion. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022080 |
[5] |
S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577 |
[6] |
Tien-Tsan Shieh. From gradient theory of phase transition to a generalized minimal interface problem with a contact energy. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2729-2755. doi: 10.3934/dcds.2016.36.2729 |
[7] |
Michael Stiassnie, Raphael Stuhlmeier. Progressive waves on a blunt interface. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3171-3182. doi: 10.3934/dcds.2014.34.3171 |
[8] |
Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185 |
[9] |
Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741 |
[10] |
Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481 |
[11] |
Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91 |
[12] |
Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323 |
[13] |
Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175 |
[14] |
Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373 |
[15] |
Giada Basile, Tomasz Komorowski, Stefano Olla. Diffusion limit for a kinetic equation with a thermostatted interface. Kinetic and Related Models, 2019, 12 (5) : 1185-1196. doi: 10.3934/krm.2019045 |
[16] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[17] |
Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure and Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1 |
[18] |
Yuri Trakhinin. On well-posedness of the plasma-vacuum interface problem: the case of non-elliptic interface symbol. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1371-1399. doi: 10.3934/cpaa.2016.15.1371 |
[19] |
Markus Gahn, Maria Neuss-Radu, Peter Knabner. Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13 (4) : 609-640. doi: 10.3934/nhm.2018028 |
[20] |
Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]