December  2013, 6(6): 1587-1598. doi: 10.3934/dcdss.2013.6.1587

Dual formulation of a viscoplastic contact problem with unilateral constraint

1. 

Departement of Mathematics, University of Craiov, A.I. Cuza Street 13, 200585, Craiova

2. 

Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan

Received  June 2012 Revised  September 2012 Published  April 2013

We consider a mathematical model which describes the contact between a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic, the contact is frictionless and is modelled with unilateral constraint. We derive a variational formulation of the model which leads to a history-dependent quasivariational inequality for stress field, associated to a time-dependent convex. Then we prove the unique weak solvability of the model. The proof is based on an abstract existence and uniqueness result obtained in [11].
Citation: Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587
References:
[1]

M. Anders, "Dual-Dual Formulations for Frictional Contact Problems in Mechanics," Ph.D thesis, Leibniz Universität, Hannover, 2011.

[2]

B. Awbi, M. Shillor and M. Sofonea, Dual formulation of a quasistatic viscoelastic contact problem with Tresca's friction law, Applicable Analysis, 79 (2001), 1-20. doi: 10.1080/00036810108840949.

[3]

M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Q. J. Mechanics Appl. Math., 65 (2012), 555-579. doi: 10.1093/qjmam/hbs016.

[4]

N. Cristescu and I. Suliciu, "Viscoplasticity," Translated from the Romanian, Mechanics of Plastic Solids, 5, Martinus Nijhoff Publishers, The Hague, 1982.

[5]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, Americal Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.

[6]

I. Hlaváček, J. Haslinger, J. Nečas and J. Lovášek, "Solution of Variational Inequalities in Mechanics," Translated from the Slovak by J. Jarník, Applied Mathematical Sciences, 66, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1048-1.

[7]

I. R. Ionescu and M. Sofonea, "Functional and Numerical Methods in Viscoplasticity," Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

[8]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, SIAM, Philadelphia, PA, 1988.

[9]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact," Lecture Notes in Physics, 655, Springer, Berlin, 2004. doi: 10.1007/b99799.

[10]

M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on Pure and Applied Analysis, 7 (2008), 645-658. doi: 10.3934/cpaa.2008.7.645.

[11]

M. Sofonea and A. Matei, History-dependent quasi-variational inequalities arising in contact mechanics, European Journal of Applied Mathematics, 22 (2011), 471-491. doi: 10.1017/S0956792511000192.

[12]

J. J. Telega, Topics on unilateral contact problems of elasticity and inelasticity, in "Nonsmooth Mechanics and Applications" (eds. J.-J. Moreau, P. D. Panagiotopoulos and G. Strang), Birkhäuser Verlag, Basel, (1988), 340-461.

show all references

References:
[1]

M. Anders, "Dual-Dual Formulations for Frictional Contact Problems in Mechanics," Ph.D thesis, Leibniz Universität, Hannover, 2011.

[2]

B. Awbi, M. Shillor and M. Sofonea, Dual formulation of a quasistatic viscoelastic contact problem with Tresca's friction law, Applicable Analysis, 79 (2001), 1-20. doi: 10.1080/00036810108840949.

[3]

M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Q. J. Mechanics Appl. Math., 65 (2012), 555-579. doi: 10.1093/qjmam/hbs016.

[4]

N. Cristescu and I. Suliciu, "Viscoplasticity," Translated from the Romanian, Mechanics of Plastic Solids, 5, Martinus Nijhoff Publishers, The Hague, 1982.

[5]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," AMS/IP Studies in Advanced Mathematics, 30, Americal Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002.

[6]

I. Hlaváček, J. Haslinger, J. Nečas and J. Lovášek, "Solution of Variational Inequalities in Mechanics," Translated from the Slovak by J. Jarník, Applied Mathematical Sciences, 66, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1048-1.

[7]

I. R. Ionescu and M. Sofonea, "Functional and Numerical Methods in Viscoplasticity," Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

[8]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods," SIAM Studies in Applied Mathematics, 8, SIAM, Philadelphia, PA, 1988.

[9]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact," Lecture Notes in Physics, 655, Springer, Berlin, 2004. doi: 10.1007/b99799.

[10]

M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on Pure and Applied Analysis, 7 (2008), 645-658. doi: 10.3934/cpaa.2008.7.645.

[11]

M. Sofonea and A. Matei, History-dependent quasi-variational inequalities arising in contact mechanics, European Journal of Applied Mathematics, 22 (2011), 471-491. doi: 10.1017/S0956792511000192.

[12]

J. J. Telega, Topics on unilateral contact problems of elasticity and inelasticity, in "Nonsmooth Mechanics and Applications" (eds. J.-J. Moreau, P. D. Panagiotopoulos and G. Strang), Birkhäuser Verlag, Basel, (1988), 340-461.

[1]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure and Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[2]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial and Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[3]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[4]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[5]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[6]

Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure and Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371

[7]

Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2021064

[8]

Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567

[9]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[10]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[11]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[12]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[13]

Furi Guo, Jinrong Wang, Jiangfeng Han. Impulsive hemivariational inequality for a class of history-dependent quasistatic frictional contact problems. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021057

[14]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[15]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[16]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[17]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[18]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks and Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

[19]

Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022, 14 (2) : 331-348. doi: 10.3934/jgm.2022001

[20]

Riccarda Rossi. Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1413-1466. doi: 10.3934/dcdss.2017075

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]