December  2013, 6(6): 1599-1608. doi: 10.3934/dcdss.2013.6.1599

Prolegomena to studies on dynamic materials and their space-time homogenization

1. 

Université Pierre et Marie Curie, Institut Jean Le Rond d'Alembert, UMR CNRS 7190, Case 162, Tour 55, 4 place Jussieu, 75252 Paris Cedex 05, France, France

Received  June 2012 Revised  September 2012 Published  April 2013

This short contribution aims at introducing the notion of dynamic materials (as initiated by Blekhman and Lurie) and the corresponding allied techniques of homogenization and asymptotic analysis. Main role is played by the canonical conservation laws of energy and wave momentum - the latter most often ignored in the field of continuum mechanics - as follows from an application of the celebrated theorem of E. Noether.
Citation: Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599
References:
[1]

I. I. Blekhman and K. A. Lur'e, On dynamic materials,, (Russian) Doklady Akademii Nauk, 371 (2000), 182.  doi: 10.1134/1.171720.  Google Scholar

[2]

V. L. Ginzburg and V. N. Tsytovich, Several problems of the theory of transition radiation and transition scattering,, Physics Reports, 49 (1979), 1.  doi: 10.1016/0370-1573(79)90052-8.  Google Scholar

[3]

K. A. Lurie, "Introduction to the Mathematical Theory of Dynamic Materials,", Advances in Mechanics and Mathematics, 15 (2007).   Google Scholar

[4]

K. A. Lurie, On homogenization of activated laminates in 1D-space and time,, Zeit. Angew. Math. Mech., 89 (2009), 333.  doi: 10.1002/zamm.200800185.  Google Scholar

[5]

K. A. Lurie, D. Onofrei and S. L. Weekes, Mathematical analysis of the waves propagation through a rectangular material structure in space-time,, J. Math. Analysis and Applications, 355 (2009), 180.  doi: 10.1016/j.jmaa.2009.01.031.  Google Scholar

[6]

G. A. Maugin, "Material Inhomogeneties in Elasticity,", Applied Mathematics and Mathematical Computation, 3 (1993).   Google Scholar

[7]

G. A. Maugin, "Configurational Forces. Thermomechanics, Physics, Mathematics, and Numerics,", CRC Series: Modern Mechanics and Mathematics, (2011).   Google Scholar

[8]

G. Nadin, Traveling fronts in space-time periodic media,, J. Math. Pures Appl. (9), 92 (2009), 232.  doi: 10.1016/j.matpur.2009.04.002.  Google Scholar

[9]

D. E. Neuenschwander, "Emmy Noether's Wonderful Theorem,", Johns Hopkins University Press, (2011).   Google Scholar

[10]

M. Rousseau, G. A. Maugin and M. Berezovski, Elements of study on dynamic materials,, Arch. Appl. Mechanics, 81 (2011), 925.  doi: 10.1007/s00419-010-0461-4.  Google Scholar

[11]

E. Sánchez-Palencia and A. Zaoui, eds., "Homogenization Techniques for Composite Media,", Papers from the course held in Udine, 272 (1985), 1.  doi: 10.1007/3-540-17616-0.  Google Scholar

[12]

C. A. Truesdell and R. A. Toupin, Classical theory of fields,, in, (1960).   Google Scholar

[13]

A. I. Vesnitskii and A. V. Metrikine, Transition radiation in mechanics,, Physics-Uspekhi, 39 (1996), 983.   Google Scholar

show all references

References:
[1]

I. I. Blekhman and K. A. Lur'e, On dynamic materials,, (Russian) Doklady Akademii Nauk, 371 (2000), 182.  doi: 10.1134/1.171720.  Google Scholar

[2]

V. L. Ginzburg and V. N. Tsytovich, Several problems of the theory of transition radiation and transition scattering,, Physics Reports, 49 (1979), 1.  doi: 10.1016/0370-1573(79)90052-8.  Google Scholar

[3]

K. A. Lurie, "Introduction to the Mathematical Theory of Dynamic Materials,", Advances in Mechanics and Mathematics, 15 (2007).   Google Scholar

[4]

K. A. Lurie, On homogenization of activated laminates in 1D-space and time,, Zeit. Angew. Math. Mech., 89 (2009), 333.  doi: 10.1002/zamm.200800185.  Google Scholar

[5]

K. A. Lurie, D. Onofrei and S. L. Weekes, Mathematical analysis of the waves propagation through a rectangular material structure in space-time,, J. Math. Analysis and Applications, 355 (2009), 180.  doi: 10.1016/j.jmaa.2009.01.031.  Google Scholar

[6]

G. A. Maugin, "Material Inhomogeneties in Elasticity,", Applied Mathematics and Mathematical Computation, 3 (1993).   Google Scholar

[7]

G. A. Maugin, "Configurational Forces. Thermomechanics, Physics, Mathematics, and Numerics,", CRC Series: Modern Mechanics and Mathematics, (2011).   Google Scholar

[8]

G. Nadin, Traveling fronts in space-time periodic media,, J. Math. Pures Appl. (9), 92 (2009), 232.  doi: 10.1016/j.matpur.2009.04.002.  Google Scholar

[9]

D. E. Neuenschwander, "Emmy Noether's Wonderful Theorem,", Johns Hopkins University Press, (2011).   Google Scholar

[10]

M. Rousseau, G. A. Maugin and M. Berezovski, Elements of study on dynamic materials,, Arch. Appl. Mechanics, 81 (2011), 925.  doi: 10.1007/s00419-010-0461-4.  Google Scholar

[11]

E. Sánchez-Palencia and A. Zaoui, eds., "Homogenization Techniques for Composite Media,", Papers from the course held in Udine, 272 (1985), 1.  doi: 10.1007/3-540-17616-0.  Google Scholar

[12]

C. A. Truesdell and R. A. Toupin, Classical theory of fields,, in, (1960).   Google Scholar

[13]

A. I. Vesnitskii and A. V. Metrikine, Transition radiation in mechanics,, Physics-Uspekhi, 39 (1996), 983.   Google Scholar

[1]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[2]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[3]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[4]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[5]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[6]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[7]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[8]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[9]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[10]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[11]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[12]

Vincent Astier, Thomas Unger. Galois extensions, positive involutions and an application to unitary space-time coding. Advances in Mathematics of Communications, 2019, 13 (3) : 513-516. doi: 10.3934/amc.2019032

[13]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020037

[14]

Paolo Paoletti. Acceleration waves in complex materials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 637-659. doi: 10.3934/dcdsb.2012.17.637

[15]

Sung Kyu Choi, Namjip Koo. Stability of linear dynamic equations on time scales. Conference Publications, 2009, 2009 (Special) : 161-170. doi: 10.3934/proc.2009.2009.161

[16]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[17]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[18]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[19]

Andrew Comech. Weak attractor of the Klein-Gordon field in discrete space-time interacting with a nonlinear oscillator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2711-2755. doi: 10.3934/dcds.2013.33.2711

[20]

Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]