February  2013, 6(1): 167-191. doi: 10.3934/dcdss.2013.6.167

A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems

1. 

Dipartimento di Matematica, Università di Brescia, Via Valotti 9, I-25133 Brescia, Italy

2. 

Dipartimento di Matematica “F. Casorati", Università di Pavia, Via Ferrata 1, I- 27100 Pavia, Italy

Received  September 2011 Revised  October 2011 Published  October 2012

The notion of BV solution to a rate-independent system was introduced in [8] to describe the vanishing viscosity limit (in the dissipation term) of doubly nonlinear evolution equations. Like energetic solutions [5] in the case of convex energies, BV solutions provide a careful description of rate-independent evolution driven by nonconvex energies, and in particular of the energetic behavior of the system at jumps.
    In this paper we study both notions in the one-dimensional setting and we obtain a full characterization of BV and energetic solutions for a broad family of energy functionals. In the case of monotone loadings we provide a simple and explicit characterization of such solutions, which allows for a direct comparison of the two concepts.
Citation: Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'', Oxford Mathematical Monographs, (2000).   Google Scholar

[2]

M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Analysis, 13 (2006), 151.   Google Scholar

[3]

I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnels,'', Dunod, (1974).   Google Scholar

[4]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[5]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.   Google Scholar

[6]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, in, (2008), 87.   Google Scholar

[7]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[8]

A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var, 18 (2012), 36.  doi: 10.1051/cocv/2010054.Published.  Google Scholar

[9]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis,, in, (1999), 117.   Google Scholar

[10]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[11]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340.  doi: 10.1137/090750809.  Google Scholar

[12]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation,, Adv. Calc. Var., 3 (2010), 149.   Google Scholar

[13]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492.  doi: 10.1002/mana.200810803.  Google Scholar

[14]

A. Visintin, "Differential Models of Hysteresis,'', Applied Mathematical Sciences, (1994).   Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'', Oxford Mathematical Monographs, (2000).   Google Scholar

[2]

M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity,, J. Convex Analysis, 13 (2006), 151.   Google Scholar

[3]

I. Ekeland and R. Temam, "Analyse Convexe et Problèmes Variationnels,'', Dunod, (1974).   Google Scholar

[4]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[5]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.   Google Scholar

[6]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, in, (2008), 87.   Google Scholar

[7]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[8]

A. Mielke, R. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var, 18 (2012), 36.  doi: 10.1051/cocv/2010054.Published.  Google Scholar

[9]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis,, in, (1999), 117.   Google Scholar

[10]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[11]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340.  doi: 10.1137/090750809.  Google Scholar

[12]

M. Negri, A comparative analysis on variational models for quasi-static brittle crack propagation,, Adv. Calc. Var., 3 (2010), 149.   Google Scholar

[13]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492.  doi: 10.1002/mana.200810803.  Google Scholar

[14]

A. Visintin, "Differential Models of Hysteresis,'', Applied Mathematical Sciences, (1994).   Google Scholar

[1]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[2]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[18]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[19]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[20]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]