-
Previous Article
On the Fleck and Willis homogenization procedure in strain gradient plasticity
- DCDS-S Home
- This Issue
-
Next Article
Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions
Young-measure quasi-static damage evolution: The nonconvex and the brittle cases
1. | IMATI-CNR, v. Ferrata 1, I-27100, Pavia, Italy |
References:
[1] |
H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization,'', MPS/SIAM Series on Optimization, (2006).
|
[2] |
J. F. Babadjian, A quasi-static evolution model for the interaction between fracture and damage,, Arch. Rational Mech. Anal., 200 (2011), 945.
doi: 10.1007/s00205-010-0379-6. |
[3] |
J. M. Ball, A version of the fundamental theoremfor Young measures,, in, (1989), 207.
|
[4] |
G. Bouchitté, A. Mielke, and T. Roubíček, A complete-damage problem at small strains,, ZAMP Z. Angew. Math. Phys., 60 (2009), 205.
doi: 10.1007/s00033-007-7064-0. |
[5] |
G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures,, Netw. Heterog. Media, 2 (2007), 1.
|
[6] |
G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Globally stable quasi-static evolution in plasticitywith softening,, Netw. Heterog. Media, 3 (2008), 567.
|
[7] |
G. Dal Maso, G. Francfort and R. Toader, Quasi-static crack growth in finite elasticity,, Preprint SISSA, (2004). Google Scholar |
[8] |
A. DeSimone, J. J. Marigo and L. Teresi, A damage mechanics approach to stress softening and its application to rubber,, Eur. J. Mech. A, 20 (2001), 873.
doi: 10.1016/S0997-7538(01)01171-8. |
[9] |
E. De Souza Neto, D. Peric and D. Owen, A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects,, J. Mech. Phys. Solids, 42 (1994), 1533.
doi: 10.1016/0022-5096(94)90086-8. |
[10] |
I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,'', North Holland, (1976). Google Scholar |
[11] |
A. Fiaschi, A Young measure approach toquasi-static evolution for a class of material models with nonconvexelastic energies,, ESAIM Control Optim. Calc. Var., 15 (2009), 245.
doi: 10.1051/cocv:2008030. |
[12] |
A. Fiaschi, Rate-independent phase transitions in elastic materials: a Young-measure approach,, Netw. Heterog. Media, 5 (2010), 257.
|
[13] |
A. Fiaschi, D. Knees and U. Stefanelli, Young-measure qusi-static damage evolution,, Arch. Rational Mech. Anal., 203 (2012), 415.
doi: 10.1007/s00205-011-0474-3. |
[14] |
A. Fiaschi, D. Knees and S. Reichelt, "Global Higher Integrability of Minimizers of Variational Problems with Mixed Boundary Conditions,", WIAS Preprint 1664., (1664). Google Scholar |
[15] |
I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition,, Calc. Var. PDEs, 2 (1994), 283.
|
[16] |
G. Francfort and A. Garroni, A variational view of partial brittle damage evolution,, Arch. Rational Mech. Anal., 182 (2006), 125.
doi: 10.1007/s00205-006-0426-5. |
[17] |
G. Francfor and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech Phys. Solids, 46 (1998), 1319.
doi: 10.1016/S0022-5096(98)00034-9. |
[18] |
A. Garroni and C. Larsen, Threshold-based quasi-static brittle damage evolution,, Arch. Rational Mech. Anal., 194 (2009), 585.
doi: 10.1007/s00205-008-0174-9. |
[19] |
M. Giaquinta and E. Giusti, Quasi-minima,, Ann. Inst. H. Poincaré, 1 (1984), 79.
|
[20] |
E. Giusti, "Direct Methods in the Calculus of Variations,'', World Scientific Publishing Co., (2003).
|
[21] |
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations,, Math. Ann., 283 (1989), 679.
doi: 10.1007/BF01442860. |
[22] |
Y. Hamiel, O. Katz, V. Lyakhovsky, Z. Reches and Y. Fialko, Stable and unstable damage evolution in rocks with implications to fracturing of granite,, Geophys. J. Int., 167 (2006), 1005.
doi: 10.1111/j.1365-246X.2006.03126.x. |
[23] |
Y. Hamiel, V. Lyakhovsky, S. Stanchits, G. Dresen and Y. Ben-Zion, Brittle deformation and damage-induced seismic wave anisotropy in rocks,, Geophys. J. Int., 178 (2009), 901.
doi: 10.1111/j.1365-246X.2009.04200.x. |
[24] |
D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces,, J. Geom. Anal., 4 (1994), 59.
|
[25] |
V. Lyakhovsky, Z. Reches, R. Weiberger and T. E. Scott, Nonlinear elastic behaviour of damaged rocks,, Geophys. J. Int., 130 (1997), 157.
doi: 10.1111/j.1365-246X.1997.tb00995.x. |
[26] |
V. Lyakhovsky and Y. Ben-Zion, Scaling relations of earthquakes and aseismic deformation in a damage rheology model,, Geophys. J. Int., 172 (2008), 651.
doi: 10.1111/j.1365-246X.2007.03652.x. |
[27] |
A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, Math. Models Methods Appl. Sci, 16 (2006), 177.
doi: 10.1142/S021820250600111X. |
[28] |
A. Mielke, T. Roubíček and J. Zemam, Complete damage in elastic and viscoelastic media and its energetics,, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1242.
doi: 10.1016/j.cma.2009.09.020. |
[29] |
A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151.
doi: 10.1007/s00030-003-1052-7. |
[30] |
P. Pedregal, "Parametrized Measures and Variational Principles,'', Progress in Nonlinear Differential Equations and their Applications 30. Birkhäuser Verlag, (1997).
|
[31] |
M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results,, ZAMM Z. Angew. Math. Mech., 90 (2010), 88.
doi: 10.1002/zamm.200900243. |
[32] |
M. Valadier, Young measures,, in, (1990), 152.
|
show all references
References:
[1] |
H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization,'', MPS/SIAM Series on Optimization, (2006).
|
[2] |
J. F. Babadjian, A quasi-static evolution model for the interaction between fracture and damage,, Arch. Rational Mech. Anal., 200 (2011), 945.
doi: 10.1007/s00205-010-0379-6. |
[3] |
J. M. Ball, A version of the fundamental theoremfor Young measures,, in, (1989), 207.
|
[4] |
G. Bouchitté, A. Mielke, and T. Roubíček, A complete-damage problem at small strains,, ZAMP Z. Angew. Math. Phys., 60 (2009), 205.
doi: 10.1007/s00033-007-7064-0. |
[5] |
G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures,, Netw. Heterog. Media, 2 (2007), 1.
|
[6] |
G. Dal Maso, A. De Simone, M. G. Mora and M. Morini, Globally stable quasi-static evolution in plasticitywith softening,, Netw. Heterog. Media, 3 (2008), 567.
|
[7] |
G. Dal Maso, G. Francfort and R. Toader, Quasi-static crack growth in finite elasticity,, Preprint SISSA, (2004). Google Scholar |
[8] |
A. DeSimone, J. J. Marigo and L. Teresi, A damage mechanics approach to stress softening and its application to rubber,, Eur. J. Mech. A, 20 (2001), 873.
doi: 10.1016/S0997-7538(01)01171-8. |
[9] |
E. De Souza Neto, D. Peric and D. Owen, A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects,, J. Mech. Phys. Solids, 42 (1994), 1533.
doi: 10.1016/0022-5096(94)90086-8. |
[10] |
I. Ekeland and R. Temam, "Convex Analysis and Variational Problems,'', North Holland, (1976). Google Scholar |
[11] |
A. Fiaschi, A Young measure approach toquasi-static evolution for a class of material models with nonconvexelastic energies,, ESAIM Control Optim. Calc. Var., 15 (2009), 245.
doi: 10.1051/cocv:2008030. |
[12] |
A. Fiaschi, Rate-independent phase transitions in elastic materials: a Young-measure approach,, Netw. Heterog. Media, 5 (2010), 257.
|
[13] |
A. Fiaschi, D. Knees and U. Stefanelli, Young-measure qusi-static damage evolution,, Arch. Rational Mech. Anal., 203 (2012), 415.
doi: 10.1007/s00205-011-0474-3. |
[14] |
A. Fiaschi, D. Knees and S. Reichelt, "Global Higher Integrability of Minimizers of Variational Problems with Mixed Boundary Conditions,", WIAS Preprint 1664., (1664). Google Scholar |
[15] |
I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition,, Calc. Var. PDEs, 2 (1994), 283.
|
[16] |
G. Francfort and A. Garroni, A variational view of partial brittle damage evolution,, Arch. Rational Mech. Anal., 182 (2006), 125.
doi: 10.1007/s00205-006-0426-5. |
[17] |
G. Francfor and J. J. Marigo, Revisiting brittle fracture as an energy minimization problem,, J. Mech Phys. Solids, 46 (1998), 1319.
doi: 10.1016/S0022-5096(98)00034-9. |
[18] |
A. Garroni and C. Larsen, Threshold-based quasi-static brittle damage evolution,, Arch. Rational Mech. Anal., 194 (2009), 585.
doi: 10.1007/s00205-008-0174-9. |
[19] |
M. Giaquinta and E. Giusti, Quasi-minima,, Ann. Inst. H. Poincaré, 1 (1984), 79.
|
[20] |
E. Giusti, "Direct Methods in the Calculus of Variations,'', World Scientific Publishing Co., (2003).
|
[21] |
K. Gröger, A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations,, Math. Ann., 283 (1989), 679.
doi: 10.1007/BF01442860. |
[22] |
Y. Hamiel, O. Katz, V. Lyakhovsky, Z. Reches and Y. Fialko, Stable and unstable damage evolution in rocks with implications to fracturing of granite,, Geophys. J. Int., 167 (2006), 1005.
doi: 10.1111/j.1365-246X.2006.03126.x. |
[23] |
Y. Hamiel, V. Lyakhovsky, S. Stanchits, G. Dresen and Y. Ben-Zion, Brittle deformation and damage-induced seismic wave anisotropy in rocks,, Geophys. J. Int., 178 (2009), 901.
doi: 10.1111/j.1365-246X.2009.04200.x. |
[24] |
D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces,, J. Geom. Anal., 4 (1994), 59.
|
[25] |
V. Lyakhovsky, Z. Reches, R. Weiberger and T. E. Scott, Nonlinear elastic behaviour of damaged rocks,, Geophys. J. Int., 130 (1997), 157.
doi: 10.1111/j.1365-246X.1997.tb00995.x. |
[26] |
V. Lyakhovsky and Y. Ben-Zion, Scaling relations of earthquakes and aseismic deformation in a damage rheology model,, Geophys. J. Int., 172 (2008), 651.
doi: 10.1111/j.1365-246X.2007.03652.x. |
[27] |
A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, Math. Models Methods Appl. Sci, 16 (2006), 177.
doi: 10.1142/S021820250600111X. |
[28] |
A. Mielke, T. Roubíček and J. Zemam, Complete damage in elastic and viscoelastic media and its energetics,, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1242.
doi: 10.1016/j.cma.2009.09.020. |
[29] |
A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151.
doi: 10.1007/s00030-003-1052-7. |
[30] |
P. Pedregal, "Parametrized Measures and Variational Principles,'', Progress in Nonlinear Differential Equations and their Applications 30. Birkhäuser Verlag, (1997).
|
[31] |
M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results,, ZAMM Z. Angew. Math. Mech., 90 (2010), 88.
doi: 10.1002/zamm.200900243. |
[32] |
M. Valadier, Young measures,, in, (1990), 152.
|
[1] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[2] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[3] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[4] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[5] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[6] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[7] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[8] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[9] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[10] |
Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020, 2 (4) : 351-390. doi: 10.3934/fods.2020017 |
[11] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[12] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[13] |
Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056 |
[14] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[15] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[16] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[17] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[18] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[19] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
[20] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]