-
Previous Article
Thermalization of rate-independent processes by entropic regularization
- DCDS-S Home
- This Issue
-
Next Article
A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems
Thermodynamics of perfect plasticity
1. | Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8 |
References:
[1] |
S. Bartels, A. Mielke and T. Roubíček, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM J. Numer. Anal., 50 (2012), 951-976. |
[2] |
S. Bartels and T. Roubíček, Thermo-visco-plasticity at small strains, Zeitschrift angew. Math. Mech., 88 (2008), 735-754.
doi: 10.1002/zamm.200800042. |
[3] |
S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, Math. Modelling Numer. Anal., 45 (2011), 477-504.
doi: 10.1051/m2an/2010063. |
[4] |
L. Boccardo, A. Dall'aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. of Funct. Anal., 147 (1997), 237-258.
doi: 10.1006/jfan.1996.3040. |
[5] |
L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169.
doi: 10.1016/0022-1236(89)90005-0. |
[6] |
K. Chełmiński, Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening, Math. Methods Appl. Sci., 24 (2001), 117-136. |
[7] |
G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225.
doi: 10.1007/s00205-004-0351-4. |
[8] |
G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0. |
[9] |
F. Ebobisse and B. D. Reddy, Some mathematical problems in perfect plasticity, Computer Meth. Appl. Mech. Engr., 193 (2004), 5071-5094.
doi: 10.1016/j.cma.2004.07.002. |
[10] |
G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies, J. reine u. angew. Math., 595 (2006), 55-91.
doi: 10.1515/CRELLE.2006.044. |
[11] |
J. Frehse and J. Málek, Boundary regularity results for models of elasto-perfect plasticity, Math. Models Meth. Appl. Sci., 9 (1999), 1307-1321.
doi: 10.1142/S0218202599000579. |
[12] |
S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis I,II," Kluwer, Dordrecht, Part I: 1997, Part II: 2000. |
[13] |
P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity, Appl. Math., 43 (1998), 173-205.
doi: 10.1023/A:1023224507448. |
[14] |
G. A. Maughin, "The Thermomechanics of Plasticity and Fracture," Cambridge Univ. Press, Cambridge, 1992.
doi: 10.1017/CBO9781139172400. |
[15] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[16] |
A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, Math. Modelling Numer. Anal., 43 (2009), 399-428.
doi: 10.1051/m2an/2009009. |
[17] |
A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. PDE, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[18] |
A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Models of Continuum Mechanics in Analysis and Engineering" (Eds.: H.D. Alber, et al.), Shaker Ver., Aachen, (1999), 117-129. |
[19] |
A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189. |
[20] |
T. Roubíček, "Nonlinear Partial Differential Equations with Applications," Birkhäuser, Basel, 2005 (2nd edition 2012). |
[21] |
T. Roubíček, Thermo-visco-elasticity at small strains with $L^1$-data, Quarterly Appl. Math., 67 (2009), 47-71. |
[22] |
T. Roubíček, Rate independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862.
doi: 10.1002/mma.1069. |
[23] |
T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.
doi: 10.1137/080729992. |
[24] |
P. M. Suquet, Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci. Paris Sér. A, 286 (1978), 1201-1204. |
[25] |
R. Temam, A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Archive Rat. Mech. Anal., 95 (1986), 137-183.
doi: 10.1007/BF00281085. |
show all references
References:
[1] |
S. Bartels, A. Mielke and T. Roubíček, Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation, SIAM J. Numer. Anal., 50 (2012), 951-976. |
[2] |
S. Bartels and T. Roubíček, Thermo-visco-plasticity at small strains, Zeitschrift angew. Math. Mech., 88 (2008), 735-754.
doi: 10.1002/zamm.200800042. |
[3] |
S. Bartels and T. Roubíček, Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion, Math. Modelling Numer. Anal., 45 (2011), 477-504.
doi: 10.1051/m2an/2010063. |
[4] |
L. Boccardo, A. Dall'aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. of Funct. Anal., 147 (1997), 237-258.
doi: 10.1006/jfan.1996.3040. |
[5] |
L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169.
doi: 10.1016/0022-1236(89)90005-0. |
[6] |
K. Chełmiński, Perfect plasticity as a zero relaxation limit of plasticity with isotropic hardening, Math. Methods Appl. Sci., 24 (2001), 117-136. |
[7] |
G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225.
doi: 10.1007/s00205-004-0351-4. |
[8] |
G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0. |
[9] |
F. Ebobisse and B. D. Reddy, Some mathematical problems in perfect plasticity, Computer Meth. Appl. Mech. Engr., 193 (2004), 5071-5094.
doi: 10.1016/j.cma.2004.07.002. |
[10] |
G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies, J. reine u. angew. Math., 595 (2006), 55-91.
doi: 10.1515/CRELLE.2006.044. |
[11] |
J. Frehse and J. Málek, Boundary regularity results for models of elasto-perfect plasticity, Math. Models Meth. Appl. Sci., 9 (1999), 1307-1321.
doi: 10.1142/S0218202599000579. |
[12] |
S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis I,II," Kluwer, Dordrecht, Part I: 1997, Part II: 2000. |
[13] |
P. Krejčí and J. Sprekels, Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity, Appl. Math., 43 (1998), 173-205.
doi: 10.1023/A:1023224507448. |
[14] |
G. A. Maughin, "The Thermomechanics of Plasticity and Fracture," Cambridge Univ. Press, Cambridge, 1992.
doi: 10.1017/CBO9781139172400. |
[15] |
A. Mielke, Evolution of rate-independent systems, in "Evolutionary Equations," (Edited by C. M. Dafermos and E. Feireisl), Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, II (2005), 461-559. |
[16] |
A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, Math. Modelling Numer. Anal., 43 (2009), 399-428.
doi: 10.1051/m2an/2009009. |
[17] |
A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. PDE, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[18] |
A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Models of Continuum Mechanics in Analysis and Engineering" (Eds.: H.D. Alber, et al.), Shaker Ver., Aachen, (1999), 117-129. |
[19] |
A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189. |
[20] |
T. Roubíček, "Nonlinear Partial Differential Equations with Applications," Birkhäuser, Basel, 2005 (2nd edition 2012). |
[21] |
T. Roubíček, Thermo-visco-elasticity at small strains with $L^1$-data, Quarterly Appl. Math., 67 (2009), 47-71. |
[22] |
T. Roubíček, Rate independent processes in viscous solids at small strains, Math. Methods Appl. Sci., 32 (2009), 825-862.
doi: 10.1002/mma.1069. |
[23] |
T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains, SIAM J. Math. Anal., 42 (2010), 256-297.
doi: 10.1137/080729992. |
[24] |
P. M. Suquet, Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci. Paris Sér. A, 286 (1978), 1201-1204. |
[25] |
R. Temam, A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity, Archive Rat. Mech. Anal., 95 (1986), 137-183.
doi: 10.1007/BF00281085. |
[1] |
Mikhail Turbin, Anastasiia Ustiuzhaninova. Pullback attractors for weak solution to modified Kelvin-Voigt model. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022011 |
[2] |
Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations and Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17 |
[3] |
Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110 |
[4] |
Ahmed Bchatnia, Nadia Souayeh. Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1317-1338. doi: 10.3934/dcdss.2022098 |
[5] |
Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 |
[6] |
Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247 |
[7] |
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 |
[8] |
Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485 |
[9] |
Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations and Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007 |
[10] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations and Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105 |
[11] |
Zhong-Jie Han, Zhuangyi Liu, Jing Wang. Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1455-1467. doi: 10.3934/dcdss.2022031 |
[12] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control and Related Fields, 2021, 11 (4) : 885-904. doi: 10.3934/mcrf.2020050 |
[13] |
Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021059 |
[14] |
Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269 |
[15] |
Weixia Zhao. The expansion of gas from a wedge with small angle into a vacuum. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2319-2330. doi: 10.3934/cpaa.2013.12.2319 |
[16] |
Manil T. Mohan. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3393-3436. doi: 10.3934/dcdsb.2020067 |
[17] |
Güher Çamliyurt, Igor Kukavica. A local asymptotic expansion for a solution of the Stokes system. Evolution Equations and Control Theory, 2016, 5 (4) : 647-659. doi: 10.3934/eect.2016023 |
[18] |
Huey-Er Lin, Jian-Guo Liu, Wen-Qing Xu. Effects of small viscosity and far field boundary conditions for hyperbolic systems. Communications on Pure and Applied Analysis, 2004, 3 (2) : 267-290. doi: 10.3934/cpaa.2004.3.267 |
[19] |
Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012 |
[20] |
Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems and Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]