April  2013, 6(2): 293-316. doi: 10.3934/dcdss.2013.6.293

Free energies and pseudo-elastic transitions for shape memory alloys

1. 

Facoltà di Ingegneria, Università e-Campus, 22060 Novedrate (CO)

2. 

Dipartimento di Matematica, Università di Brescia, 25133 Brescia, Italy, Italy

Received  May 2011 Revised  October 2011 Published  November 2012

A one-dimensional model for a shape memory alloy is proposed. It provides a simplified description of the pseudo-elastic regime, where stress-induced transitions from austenitic to oriented martensitic phases occurs. The stress-strain evolution is ruled by a bilinear rate-independent o.d.e. which also accounts for the fine structure of minor hysteresis loops and applies to the case of single crystals only. The temperature enters the model as a parameter through the yield limit $y$.Above the critical temperature $\theta_A^*$, the austenite-martensite phase transformations are described by a Ginzburg-Landau theory involving an order parameter $φ$, which is related to the anelastic deformation. As usual, the basic ingredient is the Gibbs free energy, $\zeta$, which is a function of the order parameter, the stress and the temperature. Unlike other approaches, the expression of this thermodynamic potential is derived rather then assumed, here. The explicit expressions of the minimum and maximum free energies are obtained by exploiting the Clausius-Duhem inequality, which ensures the compatibility with thermodynamics, and the complete controllability of the system. This allows us to highlight the role of the Ginzburg-Landau equation when phase transitions in materials with hysteresis are involved.
Citation: Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293
References:
[1]

F. Auricchio, Considerations on the constitutive modeling of shape-memory alloys,, in, (2002), 125.   Google Scholar

[2]

A. Berti, C. Giorgi and E. Vuk, Free energies in one-dimensional models of magnetic transitions with hysteresis,, Il Nuovo Cimento, 125 (2010), 371.   Google Scholar

[3]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model,, Physica D, 239 (2010), 95.  doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[4]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3430573.  Google Scholar

[5]

L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variables,, Journal of Intelligent Material Systems and Structures, 4 (1993), 229.  doi: 10.1177/1045389X9300400213.  Google Scholar

[6]

M. Fabrizio and A. Morro, "Electromagnetism of Continuous Media,", Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198527008.003.0010.  Google Scholar

[7]

M. Fremond, Materiaux a memoire de forme,, C. R. Acad. Sci. Paris Ser. II, 304 (1987), 239.   Google Scholar

[8]

M. Fremond, "Non-smooth Thermomechanics,", Springer-Verlag, (2002).  doi: 10.1115/1.1497489.  Google Scholar

[9]

V. I. Levitas and D. L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite$\leftrightarrow$martensite,, Physical Review B, 66 (2002), 134.   Google Scholar

[10]

S. Miyazaki, Development and characterization of shape memory alloys,, in, 351 (1996), 69.   Google Scholar

[11]

I. Müller, Thermodynamics of ideal pseudoelasticity,, Journal de Physique IV, C2-5 (1995), 2.   Google Scholar

[12]

I. Müller and S. Seelecke, Thermodynamic aspects of shape memory alloys,, Math. Comp. Modelling, 34 (2001), 1307.  doi: 10.1016/S0895-7177(01)00134-0.  Google Scholar

[13]

F. Nishimura, N. Watanabe, T. Watanabe and K. Tanaka, Transformation conditions in an Fe-based shape memory alloy under tensile-torsional loads: Martensite start surface and austenite start/finish planes,, Material Science and Engineering, A264 (1999), 232.  doi: 10.1016/S0921-5093(98)01093-4.  Google Scholar

[14]

C. M. Wayman, Shape memory and related phenomena,, Progress in Materials Science, 36 (1992), 203.  doi: 10.1016/0079-6425(92)90009-V.  Google Scholar

[15]

J. C. Willems, Dissipative dynamical systems - Part I: General theory,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

show all references

References:
[1]

F. Auricchio, Considerations on the constitutive modeling of shape-memory alloys,, in, (2002), 125.   Google Scholar

[2]

A. Berti, C. Giorgi and E. Vuk, Free energies in one-dimensional models of magnetic transitions with hysteresis,, Il Nuovo Cimento, 125 (2010), 371.   Google Scholar

[3]

V. Berti, M. Fabrizio and D. Grandi, Phase transitions in shape memory alloys: A non-isothermal Ginzburg-Landau model,, Physica D, 239 (2010), 95.  doi: 10.1016/j.physd.2009.10.005.  Google Scholar

[4]

V. Berti, M. Fabrizio and D. Grandi, Hysteresis and phase transitions for one-dimensional and three-dimensional models in shape memory alloys,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3430573.  Google Scholar

[5]

L. C. Brinson, One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variables,, Journal of Intelligent Material Systems and Structures, 4 (1993), 229.  doi: 10.1177/1045389X9300400213.  Google Scholar

[6]

M. Fabrizio and A. Morro, "Electromagnetism of Continuous Media,", Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198527008.003.0010.  Google Scholar

[7]

M. Fremond, Materiaux a memoire de forme,, C. R. Acad. Sci. Paris Ser. II, 304 (1987), 239.   Google Scholar

[8]

M. Fremond, "Non-smooth Thermomechanics,", Springer-Verlag, (2002).  doi: 10.1115/1.1497489.  Google Scholar

[9]

V. I. Levitas and D. L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite$\leftrightarrow$martensite,, Physical Review B, 66 (2002), 134.   Google Scholar

[10]

S. Miyazaki, Development and characterization of shape memory alloys,, in, 351 (1996), 69.   Google Scholar

[11]

I. Müller, Thermodynamics of ideal pseudoelasticity,, Journal de Physique IV, C2-5 (1995), 2.   Google Scholar

[12]

I. Müller and S. Seelecke, Thermodynamic aspects of shape memory alloys,, Math. Comp. Modelling, 34 (2001), 1307.  doi: 10.1016/S0895-7177(01)00134-0.  Google Scholar

[13]

F. Nishimura, N. Watanabe, T. Watanabe and K. Tanaka, Transformation conditions in an Fe-based shape memory alloy under tensile-torsional loads: Martensite start surface and austenite start/finish planes,, Material Science and Engineering, A264 (1999), 232.  doi: 10.1016/S0921-5093(98)01093-4.  Google Scholar

[14]

C. M. Wayman, Shape memory and related phenomena,, Progress in Materials Science, 36 (1992), 203.  doi: 10.1016/0079-6425(92)90009-V.  Google Scholar

[15]

J. C. Willems, Dissipative dynamical systems - Part I: General theory,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

[1]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[3]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. A comparative study of atomistic-based stress evaluation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020322

[4]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[12]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]