April  2013, 6(2): 317-330. doi: 10.3934/dcdss.2013.6.317

A phase field model for liquid-vapour phase transitions

1. 

University of Bologna, Department of Mathemathics, I-40126, Bologna, Italy, Italy, Italy

Received  July 2011 Revised  November 2011 Published  November 2012

We propose a model describing the liquid-vapour phase transition according to a phase-field method. A phase variable $φ$ is introduced whose equilibrium values $φ=0$ and $φ=1$ are associated with the liquid and vapour phases. The phase field obeys Ginzburg-Landau equation and enters the constitutive relation of the density, accounting for the sudden density jump occurring at the phase transition. In this paper we concern ourselves especially with the problems arising in the phase field approach due to the existence of the critical point in the coexistence line, which entails the merging of the phases described by $φ$.
Citation: Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317
References:
[1]

M. Fabrizio, Ice-water and liquid-vapour phase transitions by a Ginzburg-Landau model,, Journal of Mathematical Physics, 49 (2008).  doi: 10.1515/bfup.2008.027.  Google Scholar

[2]

L. P. Kadanoff, et al., Static phenomena near critical points: Theory and experiment,, Reviews of Modern Physics, 39 (1967), 395.   Google Scholar

[3]

P. M. Chaikin and T. C. Lubensky, "Principles of Condensed Matter Physics,", Cambridge University Press, (1995).  doi: 10.1016/1053-8127(95)00142-B.  Google Scholar

[4]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilib. Thermodyn, 34 (2009), 219.   Google Scholar

[5]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions,, Int. J. Eng. Sci., 44 (2006), 529.   Google Scholar

[6]

F. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Physica D, 68 (1993), 326.   Google Scholar

[7]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).   Google Scholar

[8]

M. Fremond, "Non-smooth Thermomechanics,", Springer, (2001).   Google Scholar

[9]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Int J. Eng Sci., 47 (2009), 821.  doi: 10.1080/14735780802696351.  Google Scholar

show all references

References:
[1]

M. Fabrizio, Ice-water and liquid-vapour phase transitions by a Ginzburg-Landau model,, Journal of Mathematical Physics, 49 (2008).  doi: 10.1515/bfup.2008.027.  Google Scholar

[2]

L. P. Kadanoff, et al., Static phenomena near critical points: Theory and experiment,, Reviews of Modern Physics, 39 (1967), 395.   Google Scholar

[3]

P. M. Chaikin and T. C. Lubensky, "Principles of Condensed Matter Physics,", Cambridge University Press, (1995).  doi: 10.1016/1053-8127(95)00142-B.  Google Scholar

[4]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilib. Thermodyn, 34 (2009), 219.   Google Scholar

[5]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions,, Int. J. Eng. Sci., 44 (2006), 529.   Google Scholar

[6]

F. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Physica D, 68 (1993), 326.   Google Scholar

[7]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).   Google Scholar

[8]

M. Fremond, "Non-smooth Thermomechanics,", Springer, (2001).   Google Scholar

[9]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Int J. Eng Sci., 47 (2009), 821.  doi: 10.1080/14735780802696351.  Google Scholar

[1]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[2]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[3]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[4]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[5]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[9]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[10]

Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021020

[11]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[14]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[15]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[16]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[17]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[18]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[19]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[20]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]