April  2013, 6(2): 317-330. doi: 10.3934/dcdss.2013.6.317

A phase field model for liquid-vapour phase transitions

1. 

University of Bologna, Department of Mathemathics, I-40126, Bologna, Italy, Italy, Italy

Received  July 2011 Revised  November 2011 Published  November 2012

We propose a model describing the liquid-vapour phase transition according to a phase-field method. A phase variable $φ$ is introduced whose equilibrium values $φ=0$ and $φ=1$ are associated with the liquid and vapour phases. The phase field obeys Ginzburg-Landau equation and enters the constitutive relation of the density, accounting for the sudden density jump occurring at the phase transition. In this paper we concern ourselves especially with the problems arising in the phase field approach due to the existence of the critical point in the coexistence line, which entails the merging of the phases described by $φ$.
Citation: Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317
References:
[1]

M. Fabrizio, Ice-water and liquid-vapour phase transitions by a Ginzburg-Landau model,, Journal of Mathematical Physics, 49 (2008). doi: 10.1515/bfup.2008.027.

[2]

L. P. Kadanoff, et al., Static phenomena near critical points: Theory and experiment,, Reviews of Modern Physics, 39 (1967), 395.

[3]

P. M. Chaikin and T. C. Lubensky, "Principles of Condensed Matter Physics,", Cambridge University Press, (1995). doi: 10.1016/1053-8127(95)00142-B.

[4]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilib. Thermodyn, 34 (2009), 219.

[5]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions,, Int. J. Eng. Sci., 44 (2006), 529.

[6]

F. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Physica D, 68 (1993), 326.

[7]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).

[8]

M. Fremond, "Non-smooth Thermomechanics,", Springer, (2001).

[9]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Int J. Eng Sci., 47 (2009), 821. doi: 10.1080/14735780802696351.

show all references

References:
[1]

M. Fabrizio, Ice-water and liquid-vapour phase transitions by a Ginzburg-Landau model,, Journal of Mathematical Physics, 49 (2008). doi: 10.1515/bfup.2008.027.

[2]

L. P. Kadanoff, et al., Static phenomena near critical points: Theory and experiment,, Reviews of Modern Physics, 39 (1967), 395.

[3]

P. M. Chaikin and T. C. Lubensky, "Principles of Condensed Matter Physics,", Cambridge University Press, (1995). doi: 10.1016/1053-8127(95)00142-B.

[4]

A. Berti and C. Giorgi, A phase-field model for liquid-vapor transitions,, J. Non-Equilib. Thermodyn, 34 (2009), 219.

[5]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions,, Int. J. Eng. Sci., 44 (2006), 529.

[6]

F. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Physica D, 68 (1993), 326.

[7]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Springer, (1996).

[8]

M. Fremond, "Non-smooth Thermomechanics,", Springer, (2001).

[9]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to ferromagnetism and phase transitions,, Int J. Eng Sci., 47 (2009), 821. doi: 10.1080/14735780802696351.

[1]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[2]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[3]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[4]

Jiayan Yang, Dongpei Zhang. Superfluidity phase transitions for liquid $ ^{4} $He system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-14. doi: 10.3934/dcdsb.2019045

[5]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[6]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[7]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[8]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[9]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[10]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[11]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[12]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[13]

Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723

[14]

João-Paulo Dias, Mário Figueira. On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 53-58. doi: 10.3934/cpaa.2004.3.53

[15]

Kelum Gajamannage, Erik M. Bollt. Detecting phase transitions in collective behavior using manifold's curvature. Mathematical Biosciences & Engineering, 2017, 14 (2) : 437-453. doi: 10.3934/mbe.2017027

[16]

Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639

[17]

José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055

[18]

Shuichi Kawashima, Peicheng Zhu. Traveling waves for models of phase transitions of solids driven by configurational forces. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 309-323. doi: 10.3934/dcdsb.2011.15.309

[19]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[20]

Christian Hofer, Georg Jäger, Manfred Füllsack. Critical transitions and Early Warning Signals in repeated Cooperation Games. Journal of Dynamics & Games, 2018, 5 (3) : 223-230. doi: 10.3934/jdg.2018014

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]