April  2013, 6(2): 353-368. doi: 10.3934/dcdss.2013.6.353

An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity

1. 

Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia

2. 

Dipartimento di Ingegneria Civile, Università di Roma "Tor Vergata", Via del Politecnico 1, 00133 Roma, Italy

3. 

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany

Received  September 2011 Revised  January 2012 Published  November 2012

This paper is concerned with a diffusion model of phase-field type, consisting of a parabolic system of two partial differential equations, interpreted as balances of microforces and microenergy, for two unknowns: the problem's order parameter $\rho$ and the chemical potential $\mu$; each equation includes a viscosity term -- respectively, $\varepsilon \,\partial_t\mu$ and $\delta\,\partial_t\rho$ -- with $\varepsilon$ and $\delta$ two positive parameters; the field equations are complemented by Neumann homogeneous boundary conditions and suitable initial conditions. In a recent paper [5], we proved that this problem is well-posed and investigated the long-time behavior of its $(\varepsilon,\delta)-$solutions. Here we discuss the asymptotic limit of the system as $\varepsilon$ tends to $0$. We prove convergence of $(\varepsilon,\delta)-$solutions to the corresponding solutions for the case $\varepsilon =0$, whose long-time behavior we characterize; in the proofs, we employ compactness and monotonicity arguments.
Citation: Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353
References:
[1]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff, (1976).  doi: 10.2165/00003495-197612040-00004.  Google Scholar

[2]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,, Arch. Rational Mech. Anal., 13 (1963), 167.   Google Scholar

[3]

P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Existence and uniqueness of a global-in-time solution to a phase segregation problem of the Allen-Cahn type,, Math. Models Methods Appl. Sci., 20 (2010), 519.   Google Scholar

[4]

P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, A temperature-dependent phase segregation problem of the Allen-Cahn type,, Adv. Math. Sci. Appl., 20 (2010), 219.   Google Scholar

[5]

P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system,, SIAM J. Appl. Math., 71 (2011), 1849.   Google Scholar

[6]

E. DiBenedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2_6.  Google Scholar

[7]

M. Frémond, "Non-smooth Thermomechanics,", Springer-Verlag, (2002).   Google Scholar

[8]

E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Phys. D, 68 (1993), 326.   Google Scholar

[9]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178.   Google Scholar

[10]

J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod Gauthier-Villars, (1969).   Google Scholar

[11]

P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice,, Ric. Mat., 55 (2006), 105.   Google Scholar

[12]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura. Appl., 146 (1987), 65.   Google Scholar

show all references

References:
[1]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Noordhoff, (1976).  doi: 10.2165/00003495-197612040-00004.  Google Scholar

[2]

B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity,, Arch. Rational Mech. Anal., 13 (1963), 167.   Google Scholar

[3]

P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Existence and uniqueness of a global-in-time solution to a phase segregation problem of the Allen-Cahn type,, Math. Models Methods Appl. Sci., 20 (2010), 519.   Google Scholar

[4]

P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, A temperature-dependent phase segregation problem of the Allen-Cahn type,, Adv. Math. Sci. Appl., 20 (2010), 219.   Google Scholar

[5]

P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn-Hilliard system,, SIAM J. Appl. Math., 71 (2011), 1849.   Google Scholar

[6]

E. DiBenedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993).  doi: 10.1007/978-1-4612-0895-2_6.  Google Scholar

[7]

M. Frémond, "Non-smooth Thermomechanics,", Springer-Verlag, (2002).   Google Scholar

[8]

E. Fried and M. E. Gurtin, Continuum theory of thermally induced phase transitions based on an order parameter,, Phys. D, 68 (1993), 326.   Google Scholar

[9]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Phys. D, 92 (1996), 178.   Google Scholar

[10]

J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod Gauthier-Villars, (1969).   Google Scholar

[11]

P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice,, Ric. Mat., 55 (2006), 105.   Google Scholar

[12]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura. Appl., 146 (1987), 65.   Google Scholar

[1]

Pierluigi Colli, Gianni Gilardi, Elisabetta Rocca, Jürgen Sprekels. Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 37-54. doi: 10.3934/dcdss.2017002

[2]

Andrea Signori. Optimal treatment for a phase field system of Cahn-Hilliard type modeling tumor growth by asymptotic scheme. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019040

[3]

Pierluigi Colli, Gianni Gilardi, Danielle Hilhorst. On a Cahn-Hilliard type phase field system related to tumor growth. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2423-2442. doi: 10.3934/dcds.2015.35.2423

[4]

Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630

[5]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[6]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[7]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[8]

Irena Pawłow, Wojciech M. Zajączkowski. On a class of sixth order viscous Cahn-Hilliard type equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 517-546. doi: 10.3934/dcdss.2013.6.517

[9]

Riccarda Rossi. On two classes of generalized viscous Cahn-Hilliard equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 405-430. doi: 10.3934/cpaa.2005.4.405

[10]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[11]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[12]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[13]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73

[14]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[15]

Monica Conti, Stefania Gatti, Alain Miranville. A singular cahn-hilliard-oono phase-field system with hereditary memory. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3033-3054. doi: 10.3934/dcds.2018132

[16]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

[17]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[18]

Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049

[19]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[20]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

[Back to Top]