April  2013, 6(2): 387-400. doi: 10.3934/dcdss.2013.6.387

A Cahn-Hilliard-Gurtin model with dynamic boundary conditions

1. 

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, United States

2. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, 86962 Chasseneuil Futuroscope Cedex, France

Received  September 2011 Revised  October 2011 Published  November 2012

Our aim in this paper is to define proper dynamic boundary conditions for a generalization of the Cahn-Hilliard system proposed by M. Gurtin. Such boundary conditions take into account the interactions with the walls in confined systems. We then study the existence and uniqueness of weak solutions.
Citation: Gisèle Ruiz Goldstein, Alain Miranville. A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 387-400. doi: 10.3934/dcdss.2013.6.387
References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, Nonlinear Anal., 47 (2001), 3455.   Google Scholar

[2]

J. W. Cahn, On spinodal decomposition,, Acta Metall., 9 (1961), 795.   Google Scholar

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.   Google Scholar

[4]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials,, Milan J. Math., 79 (2011), 561.   Google Scholar

[5]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Nachr., 279 (2006), 1448.   Google Scholar

[6]

C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation,, in, 88 (1989).   Google Scholar

[7]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition,, Phys. Rev. Lett., 79 (1997), 893.   Google Scholar

[8]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows,, Europhys. Lett., 42 (1998), 49.  doi: 10.2986/tren.001-0349.  Google Scholar

[9]

H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall,, J. Chem. Phys., 108 (1998), 3028.   Google Scholar

[10]

G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Commun. Pure Appl. Anal., 8 (2009), 881.   Google Scholar

[11]

G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Chinese Ann. Math., 31 (2010), 679.   Google Scholar

[12]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.   Google Scholar

[13]

G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls,, Physica D, 240 (2011), 754.   Google Scholar

[14]

R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions,, Comput. Phys. Commun., 133 (2001), 139.   Google Scholar

[15]

A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptotic Anal., 22 (2000), 235.   Google Scholar

[16]

A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions,, Physica D, 158 (2001), 233.   Google Scholar

[17]

A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance,, J. Appl. Math., 2003 (2003), 165.   Google Scholar

[18]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709.   Google Scholar

[19]

A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives,, Adv. Math. Sci. Appl, 8 (1998), 965.   Google Scholar

[20]

A. Novick-Cohen, The Cahn-Hilliard equation,, in, 4 (2008), 201.   Google Scholar

[21]

J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions,, Ann. Mat. Pura Appl. (4), 185 (2006), 627.   Google Scholar

[22]

R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamic boundary conditions,, Adv. Diff. Eqns., 8 (2003), 83.   Google Scholar

[23]

H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions,, J. Diff. Eqns., 204 (2004), 511.   Google Scholar

show all references

References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, Nonlinear Anal., 47 (2001), 3455.   Google Scholar

[2]

J. W. Cahn, On spinodal decomposition,, Acta Metall., 9 (1961), 795.   Google Scholar

[3]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.   Google Scholar

[4]

L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials,, Milan J. Math., 79 (2011), 561.   Google Scholar

[5]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Nachr., 279 (2006), 1448.   Google Scholar

[6]

C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation,, in, 88 (1989).   Google Scholar

[7]

H. P. Fischer, P. Maass and W. Dieterich, Novel surface modes in spinodal decomposition,, Phys. Rev. Lett., 79 (1997), 893.   Google Scholar

[8]

H. P. Fischer, P. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows,, Europhys. Lett., 42 (1998), 49.  doi: 10.2986/tren.001-0349.  Google Scholar

[9]

H. P. Fischer, J. Reinhard, W. Dieterich, J.-F. Gouyet, P. Maass, A. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall,, J. Chem. Phys., 108 (1998), 3028.   Google Scholar

[10]

G. Gilardi, A. Miranville and G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Commun. Pure Appl. Anal., 8 (2009), 881.   Google Scholar

[11]

G. Gilardi, A. Miranville and G. Schimperna, Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions,, Chinese Ann. Math., 31 (2010), 679.   Google Scholar

[12]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.   Google Scholar

[13]

G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn-Hilliard model in a domain with non-permeable walls,, Physica D, 240 (2011), 754.   Google Scholar

[14]

R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl and W. Dieterich, Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions,, Comput. Phys. Commun., 133 (2001), 139.   Google Scholar

[15]

A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptotic Anal., 22 (2000), 235.   Google Scholar

[16]

A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions,, Physica D, 158 (2001), 233.   Google Scholar

[17]

A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance,, J. Appl. Math., 2003 (2003), 165.   Google Scholar

[18]

A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions,, Math. Methods Appl. Sci., 28 (2005), 709.   Google Scholar

[19]

A. Novick-Cohen, The Cahn-Hilliard equation: Mathematical and modeling perspectives,, Adv. Math. Sci. Appl, 8 (1998), 965.   Google Scholar

[20]

A. Novick-Cohen, The Cahn-Hilliard equation,, in, 4 (2008), 201.   Google Scholar

[21]

J. Prüss, R. Racke and S. Zheng, Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions,, Ann. Mat. Pura Appl. (4), 185 (2006), 627.   Google Scholar

[22]

R. Racke and S. Zheng, The Cahn-Hilliard equation with dynamic boundary conditions,, Adv. Diff. Eqns., 8 (2003), 83.   Google Scholar

[23]

H. Wu and S. Zheng, Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions,, J. Diff. Eqns., 204 (2004), 511.   Google Scholar

[1]

Sami Injrou, Morgan Pierre. Stable discretizations of the Cahn-Hilliard-Gurtin equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1065-1080. doi: 10.3934/dcds.2008.22.1065

[2]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[3]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[4]

Mathias Wilke. $L_p$-theory for a Cahn-Hilliard-Gurtin system. Evolution Equations & Control Theory, 2012, 1 (2) : 393-429. doi: 10.3934/eect.2012.1.393

[5]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[6]

Ciprian G. Gal, Maurizio Grasselli. Singular limit of viscous Cahn-Hilliard equations with memory and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1581-1610. doi: 10.3934/dcdsb.2013.18.1581

[7]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[8]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[9]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[10]

Cecilia Cavaterra, Maurizio Grasselli, Hao Wu. Non-isothermal viscous Cahn-Hilliard equation with inertial term and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1855-1890. doi: 10.3934/cpaa.2014.13.1855

[11]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[12]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[13]

Anna Kostianko, Sergey Zelik. Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2069-2094. doi: 10.3934/cpaa.2015.14.2069

[14]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[15]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[16]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[17]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[18]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[19]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[20]

V. Casarino, K.-J. Engel, G. Nickel, S. Piazzera. Decoupling techniques for wave equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 761-772. doi: 10.3934/dcds.2005.12.761

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]