Citation: |
[1] |
A. Azevedo and L. Santos, A diffusion problem with gradient constraint depending on the temperature, Adv. Math. Sci. Appl., 20 (2010), 151-166. |
[2] |
J. L. Joly and U. Mosco, A propos de l'existence et de la régularité des solutions de certaines inéquations quasi-variationnelles, J. Funct. Anal., 34 (1974), 107-137.doi: 10.1016/0022-1236(79)90028-4. |
[3] |
A. Kadoya, Y. Murase and N. Kenmochi, A class of nonlinear parabolic systems with environmental constraints, Adv. Math. Sci. Appl., 20 (2010), 281-313. |
[4] |
R. Kano, Applications of abstract parabolic quasi-variational inequalities to obstacle problems, in "Nonlocal and Abstract Parabolic Equations and their Applications," Banach Center Publ., 86 (2009), 163-174. |
[5] |
R. Kano, N. Kenmochi and Y. Murase, Existence theorems for elliptic quasi-variational inequalities in Banach spaces, in "Recent Advances in Nonlinear Analysis," World Scientific, (2008) 149-169. |
[6] |
R. Kano, Y. Murase and N. Kenmochi, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints, in "Nonlocal and Abstract Parabolic Equations and their Applications," Banach Center Publ., 86 (2009), 175-194. |
[7] |
N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304-331.doi: 10.1007/BF02761596. |
[8] |
N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Faculty of Education, Chiba Univ., 30 (1981), 1-87. |
[9] |
M. Kunze and J.-F. Rodrigues, An elliptic quasi-variational inequality with gradient constraints and some of its applications, Math. Mech. Appl. Sci., 23 (2000), 897-908.doi: 10.1002/1099-1476(20000710)23:10<897::AID-MMA141>3.0.CO;2-H. |
[10] |
J. L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, 1969. |
[11] |
J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Volume I," Springer, Berlin, 1972. |
[12] |
Y. Murase, Abstract quasi-variational inequalities of elliptic type and applications, in "Nonlocal and Abstract Parabolic Equations and their Applications," Banach Center Publ., 86 (2009), 235-246. |
[13] |
L. Prigozhin, On the Bean critical-state model in superconductivity, European J. Appl. Math., 7 (1996), 237-247. |
[14] |
J.-F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model, Ann. Scuola Norm. Sup. Pisa, 29 (2000), 153-169. |
[15] |
L. Santos, A diffusion problem with gradient constraint and evolutive Dirichlet condition, Portugal Math., 48 (1991), 441-468. |
[16] |
L. Santos, Variational problems with non-constant gradient constraints, Portugal Math., 59 (2002), 205-248. |