April  2013, 6(2): 439-460. doi: 10.3934/dcdss.2013.6.439

Well-posedness of an extended model for water-ice phase transitions

1. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1

2. 

WIAS Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany, Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano

Received  July 2011 Revised  December 2011 Published  November 2012

We propose an improved model explaining the occurrence of high stresses due to the difference in specific volumes during phase transitions between water and ice. The unknowns of the resulting evolution problem are the absolute temperature, the volume increment, and the liquid fraction. The main novelty here consists in including the dependence of the specific heat and of the speed of sound upon the phase. These additional nonlinearities bring new mathematical difficulties which require new estimation techniques based on Moser iteration. We establish the existence of a global solution to the corresponding initial-boundary value problem, as well as lower and upper bounds for the absolute temperature. Assuming constant heat conductivity, we also prove uniqueness and continuous data dependence of the solution.
Citation: Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439
References:
[1]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J. \textbf{44(119)} (1994), 44(119) (1994), 109.

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, (1996).

[3]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.

[4]

P. Colli, P. Krejčí, E. Rocca and J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity,, J. Differ. Equations, 251 (2011), 1354.

[5]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2002).

[6]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559. doi: 10.1142/S0218202506001261.

[7]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.

[8]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).

[9]

G. Joos, "Lehrbuch der Theoretischen Physik," Akademische Verlagsgesellschaft,, Leipzig 1939 (In German)., (1939).

[10]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851. doi: 10.1137/09075086X.

[11]

P. Krejčí, E. Rocca and J. Sprekels, Phase separation in a gravity field,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 391. doi: 10.3934/dcdss.2011.4.391.

[12]

P. Krejčí, E. Rocca and J. Sprekels, Liquid-solid phase transitions in a deformable container,, Contribution to the book, (2010), 285.

[13]

E. Madelung, "Die mathematischen Hilfsmittel des Physikers,", Sixth Edition, (1957).

[14]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications 28, (1996).

show all references

References:
[1]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J. \textbf{44(119)} (1994), 44(119) (1994), 109.

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, (1996).

[3]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.

[4]

P. Colli, P. Krejčí, E. Rocca and J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity,, J. Differ. Equations, 251 (2011), 1354.

[5]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2002).

[6]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559. doi: 10.1142/S0218202506001261.

[7]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.

[8]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).

[9]

G. Joos, "Lehrbuch der Theoretischen Physik," Akademische Verlagsgesellschaft,, Leipzig 1939 (In German)., (1939).

[10]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851. doi: 10.1137/09075086X.

[11]

P. Krejčí, E. Rocca and J. Sprekels, Phase separation in a gravity field,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 391. doi: 10.3934/dcdss.2011.4.391.

[12]

P. Krejčí, E. Rocca and J. Sprekels, Liquid-solid phase transitions in a deformable container,, Contribution to the book, (2010), 285.

[13]

E. Madelung, "Die mathematischen Hilfsmittel des Physikers,", Sixth Edition, (1957).

[14]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications 28, (1996).

[1]

Emil Minchev. Existence and uniqueness of solutions of a system of nonlinear PDE for phase transitions with vector order parameter. Conference Publications, 2005, 2005 (Special) : 652-661. doi: 10.3934/proc.2005.2005.652

[2]

Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639

[3]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[4]

J. R. L. Webb. Uniqueness of the principal eigenvalue in nonlocal boundary value problems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 177-186. doi: 10.3934/dcdss.2008.1.177

[5]

Lorenzo Brasco, Marco Squassina, Yang Yang. Global compactness results for nonlocal problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 391-424. doi: 10.3934/dcdss.2018022

[6]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[7]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[8]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825

[9]

Shu-Yi Zhang. Existence of multidimensional non-isothermal phase transitions in a steady van der Waals flow. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2221-2239. doi: 10.3934/dcds.2013.33.2221

[10]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[11]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[12]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[13]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[14]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[15]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[16]

Hiroshi Matano, Yoichiro Mori. Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1573-1636. doi: 10.3934/dcds.2011.29.1573

[17]

Gabriele Bonanno, Pasquale Candito, Roberto Livrea, Nikolaos S. Papageorgiou. Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1169-1188. doi: 10.3934/cpaa.2017057

[18]

Mingxin Wang. Existence and uniqueness of solutions of free boundary problems in heterogeneous environments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 415-421. doi: 10.3934/dcdsb.2018179

[19]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[20]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]