-
Previous Article
Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions
- DCDS-S Home
- This Issue
-
Next Article
Well-posedness of an extended model for water-ice phase transitions
Equilibrium and stability of tensegrity structures: A convex analysis approach
1. | Department of Civil Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1 - 00133 Rome, Italy, Italy, Italy |
References:
[1] |
S. Pellegrino, Analysis of prestressed mechanisms,, International Journal of Solids and Structures, 26 (1990), 1329. Google Scholar |
[2] |
C. R. Calladine and S. Pellegrino, First-order infinitesimal mechanisms,, International Journal of Solids and Structures, 27 (1991), 505.
|
[3] |
C. Sultan, M. Corless and R. E. Skelton, The prestressability problem of tensegrity structures: some analytical solutions,, International Journal of Solids and Structures, 38 (2001), 5223.
doi: 10.1016/S0020-7683(00)00401-7. |
[4] |
R. Motro, "Tensegrity: Structural Systems for the Future,", Kogan Page Science, (2003).
doi: 10.1016/B978-190399637-9/50035-4. |
[5] |
B. Roth and W. Whiteley, Tensegrity frameworks,, Transactions of the American Mathematical Society, 265 (1981), 419.
doi: 10.1090/S0002-9947-1981-0610958-6. |
[6] |
R. Connelly, Rigidity and energy,, Inventiones Mathematichae, 66 (1982), 11.
doi: 10.1007/BF01404753. |
[7] |
R. Connelly and W. Whiteley, Second-order rigidity and prestress stability for tensegrity frameworks,, Journal on Discrete Mathematics, 9 (1996), 453.
doi: 10.1137/S0895480192229236. |
[8] |
R. Connelly and A. Back, Mathematics and tensegrity,, American Scientists, 86 (1998), 142.
doi: 10.1511/1998.2.142. |
[9] |
F. Maceri, M. Marino and G. Vairo, Convex analysis and ideal tensegrities,, Comptes Rendus Mecanique, 339 (2011), 683. Google Scholar |
[10] |
M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2001).
|
[11] |
P. D. Panagiotopoulos, Convex analysis and unilateral static problems,, Archive of Applied Mechanics, 45 (1976), 55. Google Scholar |
[12] |
J. J. Moreau, Fonctionnelles convexes,, Editions of Department of Civil Engineering, (9788). Google Scholar |
[13] |
S. Guest, The stiffness of prestressed frameworks: A unifying approach,, International Journal of Solids and Structures, 43 (2006), 842. Google Scholar |
[14] |
A. Micheletti and W. O. Williams, A marching procedure for form-finding for tensegrity structures,, Journal of Mechanics of Materials and Structures, 2 (2007), 857.
doi: 10.2140/jomms.2007.2.857. |
[15] |
W. O. Williams, A primer on the mechanics of tensegrity structures,, preprint, (2007). Google Scholar |
[16] |
J. Y. Zhang and M. Ohsaki, Stability conditions for tensegrity structures,, International Journal of Solids and Structures, 44 (2007), 3875.
|
show all references
References:
[1] |
S. Pellegrino, Analysis of prestressed mechanisms,, International Journal of Solids and Structures, 26 (1990), 1329. Google Scholar |
[2] |
C. R. Calladine and S. Pellegrino, First-order infinitesimal mechanisms,, International Journal of Solids and Structures, 27 (1991), 505.
|
[3] |
C. Sultan, M. Corless and R. E. Skelton, The prestressability problem of tensegrity structures: some analytical solutions,, International Journal of Solids and Structures, 38 (2001), 5223.
doi: 10.1016/S0020-7683(00)00401-7. |
[4] |
R. Motro, "Tensegrity: Structural Systems for the Future,", Kogan Page Science, (2003).
doi: 10.1016/B978-190399637-9/50035-4. |
[5] |
B. Roth and W. Whiteley, Tensegrity frameworks,, Transactions of the American Mathematical Society, 265 (1981), 419.
doi: 10.1090/S0002-9947-1981-0610958-6. |
[6] |
R. Connelly, Rigidity and energy,, Inventiones Mathematichae, 66 (1982), 11.
doi: 10.1007/BF01404753. |
[7] |
R. Connelly and W. Whiteley, Second-order rigidity and prestress stability for tensegrity frameworks,, Journal on Discrete Mathematics, 9 (1996), 453.
doi: 10.1137/S0895480192229236. |
[8] |
R. Connelly and A. Back, Mathematics and tensegrity,, American Scientists, 86 (1998), 142.
doi: 10.1511/1998.2.142. |
[9] |
F. Maceri, M. Marino and G. Vairo, Convex analysis and ideal tensegrities,, Comptes Rendus Mecanique, 339 (2011), 683. Google Scholar |
[10] |
M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2001).
|
[11] |
P. D. Panagiotopoulos, Convex analysis and unilateral static problems,, Archive of Applied Mechanics, 45 (1976), 55. Google Scholar |
[12] |
J. J. Moreau, Fonctionnelles convexes,, Editions of Department of Civil Engineering, (9788). Google Scholar |
[13] |
S. Guest, The stiffness of prestressed frameworks: A unifying approach,, International Journal of Solids and Structures, 43 (2006), 842. Google Scholar |
[14] |
A. Micheletti and W. O. Williams, A marching procedure for form-finding for tensegrity structures,, Journal of Mechanics of Materials and Structures, 2 (2007), 857.
doi: 10.2140/jomms.2007.2.857. |
[15] |
W. O. Williams, A primer on the mechanics of tensegrity structures,, preprint, (2007). Google Scholar |
[16] |
J. Y. Zhang and M. Ohsaki, Stability conditions for tensegrity structures,, International Journal of Solids and Structures, 44 (2007), 3875.
|
[1] |
Andrea Braides, Valeria Chiadò Piat. Non convex homogenization problems for singular structures. Networks & Heterogeneous Media, 2008, 3 (3) : 489-508. doi: 10.3934/nhm.2008.3.489 |
[2] |
S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577 |
[3] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[4] |
Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579 |
[5] |
Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023 |
[6] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[7] |
Wenguo Shen. Unilateral global interval bifurcation for Kirchhoff type problems and its applications. Communications on Pure & Applied Analysis, 2018, 17 (1) : 21-37. doi: 10.3934/cpaa.2018002 |
[8] |
Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic & Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945 |
[9] |
Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389 |
[10] |
Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291 |
[11] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[12] |
Florent Berthelin, Thierry Goudon, Bastien Polizzi, Magali Ribot. Asymptotic problems and numerical schemes for traffic flows with unilateral constraints describing the formation of jams. Networks & Heterogeneous Media, 2017, 12 (4) : 591-617. doi: 10.3934/nhm.2017024 |
[13] |
Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387 |
[14] |
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181 |
[15] |
Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467 |
[16] |
Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415 |
[17] |
Abdelmalek Aboussoror, Samir Adly, Vincent Jalby. Weak nonlinear bilevel problems: Existence of solutions via reverse convex and convex maximization problems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 559-571. doi: 10.3934/jimo.2011.7.559 |
[18] |
Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357 |
[19] |
Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699 |
[20] |
Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]