April  2013, 6(2): 461-478. doi: 10.3934/dcdss.2013.6.461

Equilibrium and stability of tensegrity structures: A convex analysis approach

1. 

Department of Civil Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1 - 00133 Rome, Italy, Italy, Italy

Received  August 2011 Revised  March 2012 Published  November 2012

In this paper, tensegrity structures are modeled by introducing suitable energy convex functions. These allow to enforce both ideal and non-ideal constraints, gathering compatibility, equilibrium, and stability problems, as well as their duality relationships, in the same functional framework. Arguments of convex analysis allow to recover consistently a number of basic results, as well as to formulate new interpretations and analysis criterions.
Citation: Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461
References:
[1]

S. Pellegrino, Analysis of prestressed mechanisms,, International Journal of Solids and Structures, 26 (1990), 1329.   Google Scholar

[2]

C. R. Calladine and S. Pellegrino, First-order infinitesimal mechanisms,, International Journal of Solids and Structures, 27 (1991), 505.   Google Scholar

[3]

C. Sultan, M. Corless and R. E. Skelton, The prestressability problem of tensegrity structures: some analytical solutions,, International Journal of Solids and Structures, 38 (2001), 5223.  doi: 10.1016/S0020-7683(00)00401-7.  Google Scholar

[4]

R. Motro, "Tensegrity: Structural Systems for the Future,", Kogan Page Science, (2003).  doi: 10.1016/B978-190399637-9/50035-4.  Google Scholar

[5]

B. Roth and W. Whiteley, Tensegrity frameworks,, Transactions of the American Mathematical Society, 265 (1981), 419.  doi: 10.1090/S0002-9947-1981-0610958-6.  Google Scholar

[6]

R. Connelly, Rigidity and energy,, Inventiones Mathematichae, 66 (1982), 11.  doi: 10.1007/BF01404753.  Google Scholar

[7]

R. Connelly and W. Whiteley, Second-order rigidity and prestress stability for tensegrity frameworks,, Journal on Discrete Mathematics, 9 (1996), 453.  doi: 10.1137/S0895480192229236.  Google Scholar

[8]

R. Connelly and A. Back, Mathematics and tensegrity,, American Scientists, 86 (1998), 142.  doi: 10.1511/1998.2.142.  Google Scholar

[9]

F. Maceri, M. Marino and G. Vairo, Convex analysis and ideal tensegrities,, Comptes Rendus Mecanique, 339 (2011), 683.   Google Scholar

[10]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2001).   Google Scholar

[11]

P. D. Panagiotopoulos, Convex analysis and unilateral static problems,, Archive of Applied Mechanics, 45 (1976), 55.   Google Scholar

[12]

J. J. Moreau, Fonctionnelles convexes,, Editions of Department of Civil Engineering, (9788).   Google Scholar

[13]

S. Guest, The stiffness of prestressed frameworks: A unifying approach,, International Journal of Solids and Structures, 43 (2006), 842.   Google Scholar

[14]

A. Micheletti and W. O. Williams, A marching procedure for form-finding for tensegrity structures,, Journal of Mechanics of Materials and Structures, 2 (2007), 857.  doi: 10.2140/jomms.2007.2.857.  Google Scholar

[15]

W. O. Williams, A primer on the mechanics of tensegrity structures,, preprint, (2007).   Google Scholar

[16]

J. Y. Zhang and M. Ohsaki, Stability conditions for tensegrity structures,, International Journal of Solids and Structures, 44 (2007), 3875.   Google Scholar

show all references

References:
[1]

S. Pellegrino, Analysis of prestressed mechanisms,, International Journal of Solids and Structures, 26 (1990), 1329.   Google Scholar

[2]

C. R. Calladine and S. Pellegrino, First-order infinitesimal mechanisms,, International Journal of Solids and Structures, 27 (1991), 505.   Google Scholar

[3]

C. Sultan, M. Corless and R. E. Skelton, The prestressability problem of tensegrity structures: some analytical solutions,, International Journal of Solids and Structures, 38 (2001), 5223.  doi: 10.1016/S0020-7683(00)00401-7.  Google Scholar

[4]

R. Motro, "Tensegrity: Structural Systems for the Future,", Kogan Page Science, (2003).  doi: 10.1016/B978-190399637-9/50035-4.  Google Scholar

[5]

B. Roth and W. Whiteley, Tensegrity frameworks,, Transactions of the American Mathematical Society, 265 (1981), 419.  doi: 10.1090/S0002-9947-1981-0610958-6.  Google Scholar

[6]

R. Connelly, Rigidity and energy,, Inventiones Mathematichae, 66 (1982), 11.  doi: 10.1007/BF01404753.  Google Scholar

[7]

R. Connelly and W. Whiteley, Second-order rigidity and prestress stability for tensegrity frameworks,, Journal on Discrete Mathematics, 9 (1996), 453.  doi: 10.1137/S0895480192229236.  Google Scholar

[8]

R. Connelly and A. Back, Mathematics and tensegrity,, American Scientists, 86 (1998), 142.  doi: 10.1511/1998.2.142.  Google Scholar

[9]

F. Maceri, M. Marino and G. Vairo, Convex analysis and ideal tensegrities,, Comptes Rendus Mecanique, 339 (2011), 683.   Google Scholar

[10]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2001).   Google Scholar

[11]

P. D. Panagiotopoulos, Convex analysis and unilateral static problems,, Archive of Applied Mechanics, 45 (1976), 55.   Google Scholar

[12]

J. J. Moreau, Fonctionnelles convexes,, Editions of Department of Civil Engineering, (9788).   Google Scholar

[13]

S. Guest, The stiffness of prestressed frameworks: A unifying approach,, International Journal of Solids and Structures, 43 (2006), 842.   Google Scholar

[14]

A. Micheletti and W. O. Williams, A marching procedure for form-finding for tensegrity structures,, Journal of Mechanics of Materials and Structures, 2 (2007), 857.  doi: 10.2140/jomms.2007.2.857.  Google Scholar

[15]

W. O. Williams, A primer on the mechanics of tensegrity structures,, preprint, (2007).   Google Scholar

[16]

J. Y. Zhang and M. Ohsaki, Stability conditions for tensegrity structures,, International Journal of Solids and Structures, 44 (2007), 3875.   Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[6]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[7]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[8]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[11]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[14]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[17]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[18]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[19]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[20]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]