April  2013, 6(2): 567-590. doi: 10.3934/dcdss.2013.6.567

Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact

1. 

Conservatoire National des Arts et Métiers CNAM, 292 rue Saint-Martin, Département de Mathématiques (442), 75141 Paris, Cedex 03, France

2. 

Direction Technique et Scientifique, EGIS Industries, 4, rue Dolores Ibarruri, 93188 Montreuil Cedex, France

Received  July 2011 Revised  December 2011 Published  November 2012

Pseudo-potentials are very useful tools to define thermodynamically admissible constitutive rules. Bipotentials are convenient for numerical purposes, in particular for non-associative rules. Unfortunately, these functionals are not always easy to construct starting from a given constitutive law. This work proposes a procedure to find the pseudo-potentials and the bipotential starting from the usual description of a non-associative constitutive law. This method is applied to different non-associative plasticity models such as the Drucker-Prager model and the non-linear kinematic hardening model. The same procedure allows one to obtain the pseudo-potentials of an endochronic plasticity model. The pseudo-potentials for the contact problem with dissipation are constructed using the same ideas. For all these non-associative constitutive laws a bipotential is then automatically deduced.
Citation: Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567
References:
[1]

P. Armstrong and C. Frederick, A mathematical representation of the multiaxial Bauschinger effect,, G. E. G. B. Report RD/B/N 731, (1966).   Google Scholar

[2]

Z. P. Bažant and P. D. Bath, Endochronic theory of inelasticity and failure of concrete,, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 701.   Google Scholar

[3]

Z. P. Bažant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand,, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 225.   Google Scholar

[4]

Z. P. Bažant, Endochronic inelasticity and incremental plasticity,, International Journal of Solids and Structures, 14 (1978), 691.  doi: 10.1016/0020-7683(78)90029-X.  Google Scholar

[5]

G. Bodovillé and G. de Saxcé., Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach,, European Journal of Mechanics A/Solids, 20 (2001), 99.  doi: 10.1016/S0997-7538(00)01109-8.  Google Scholar

[6]

J. L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects,, International Journal of Plasticity, 7 (1991), 1.   Google Scholar

[7]

I. F. Collins and G. T. Houlsby, Application of thermomechnical principles to the modelling of geotechnical materials,, Proceedings of the Royal Society of London, 453 (1997), 1975.   Google Scholar

[8]

G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws,, Comptes Rendus de l'Académie des Sciences, 314 (1992), 125.   Google Scholar

[9]

G. de Saxcé and L. Bousshine, Limit analysis theorems for implicit standard materials: applications to the unilateral contact with dry friction and non-associated flow rules in soils and rocks,, Int. J. Mech. Sci., 40 (1998), 387.  doi: 10.1016/S0020-7403(97)00058-1.  Google Scholar

[10]

I. Einav, A. M. Puzrin and G. T. Houlsby, Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces,, Int. J. Numer. Anal. Meth. Geomech., 27 (2003), 837.  doi: 10.1002/nag.303.  Google Scholar

[11]

M. A. Eisenberg and A. Phillips, A theory of plasticity with non-coincident yield and loading surfaces,, Acta Mechanica, 11 (1971), 247.  doi: 10.1007/BF01176559.  Google Scholar

[12]

S. Erlicher and N. Point, Thermodynamic admissibility of Bouc-Wen type hysteresis models,, Comptes Rendus Manique, 332 (2004), 51.  doi: 10.1016/j.crme.2003.10.009.  Google Scholar

[13]

S. Erlicher and N. Point, On the associativity of the Drucker-Prager model,, VIII International Conference on Computational Plasticity - Fundamentals and Applications, (2005).   Google Scholar

[14]

S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: a new interpretation based on generalized normality assumption,, International Journal of Solids and Structures, 43 (2006), 4175.   Google Scholar

[15]

S. Erlicher and O. S. Bursi, Bouc-Wen-type models with stiffness degradation: Thermodynamic analysis and applications,, Journal of Engineering Mechanics ASCE, 134 (2008), 843.   Google Scholar

[16]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag, (2002).   Google Scholar

[17]

M. Frémond, "Collisions,", Edizioni del Dipartimento di Ingegneria Civile dell'Universita di Roma Tor Vergata, (2007).   Google Scholar

[18]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés,, Journal de Mécanique, 1 (1975), 39.   Google Scholar

[19]

M. Hjiaj, J. Fortin and G. de Saxcé, A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex,, International Journal of Engineering Science, 41 (2003), 1109.  doi: 10.1016/S0020-7225(02)00376-2.  Google Scholar

[20]

G. T. Houlsby and A. M. Puzrin, A thermomechnical framework for constitutive models for rate-independent dissipative materials,, Int. J. Plasticity, 16 (2000), 1017.  doi: 10.1016/S0749-6419(99)00073-X.  Google Scholar

[21]

M. Jirek and Z. P. Bažant, "Inelastic Analysis of Structures,", Wiley, (2002).   Google Scholar

[22]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials,", Cambridge University Press, ().   Google Scholar

[23]

J. Lubliner, R. L. Taylor and F. Auricchio, A new model of generalized plasticity,, International Journal of Solids and Structures, 30 (1993), 3171.  doi: 10.1016/0020-7683(93)90146-X.  Google Scholar

[24]

J. Lubliner and R. L. Taylor, Two material models for cyclic plasticty: non linear kinematic hardening and generalized plasticity,, International Journal of Plasticity, 11 (1995), 65.  doi: 10.1016/0749-6419(94)00039-5.  Google Scholar

[25]

D. G. Luenberger, "Linear and Nonlinear Programming,", Addison-Wesley Publishing Company, ().   Google Scholar

[26]

J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité,, Comptes Rendus de l'Académie des Sciences, 271 (1970), 608.   Google Scholar

[27]

N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage,, Journal of Engineering Mechanics ASCE, 134 (2008), 832.   Google Scholar

[28]

A. M. Puzrin and G. T. Houlsby, A thermomechanical framework for rate-independent dissipative materials with internal functions,, Int. Jour. of Plasticity, 17 (2001), 1147.  doi: 10.1016/S0749-6419(00)00083-8.  Google Scholar

[29]

A. M. Puzrin and G. T. Houlsby, Fundamentals of kinematic hardening hyperplasticity,, Int. Jour. of Solids and Structures, 38 (2001), 3771.   Google Scholar

[30]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1969).   Google Scholar

[31]

K. C. Valanis, A theory of viscoplasticity without a yield surface,, Archiwum Mechaniki Stossowanej, 23 (1971), 517.   Google Scholar

[32]

K. C. Valanis, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory,, Archiwum Mechaniki Stossowanej, 32 (1980), 171.   Google Scholar

[33]

H. Ziegler, Discussion of some objections to thermodynamic orthogonality,, Ingenieur-Archiv, 50 (1981), 149.  doi: 10.1007/BF00536486.  Google Scholar

[34]

H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function,, Advances in Applied Mechanics, 25 (1987), 183.  doi: 10.1016/S0065-2156(08)70278-3.  Google Scholar

show all references

References:
[1]

P. Armstrong and C. Frederick, A mathematical representation of the multiaxial Bauschinger effect,, G. E. G. B. Report RD/B/N 731, (1966).   Google Scholar

[2]

Z. P. Bažant and P. D. Bath, Endochronic theory of inelasticity and failure of concrete,, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 701.   Google Scholar

[3]

Z. P. Bažant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand,, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 225.   Google Scholar

[4]

Z. P. Bažant, Endochronic inelasticity and incremental plasticity,, International Journal of Solids and Structures, 14 (1978), 691.  doi: 10.1016/0020-7683(78)90029-X.  Google Scholar

[5]

G. Bodovillé and G. de Saxcé., Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach,, European Journal of Mechanics A/Solids, 20 (2001), 99.  doi: 10.1016/S0997-7538(00)01109-8.  Google Scholar

[6]

J. L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects,, International Journal of Plasticity, 7 (1991), 1.   Google Scholar

[7]

I. F. Collins and G. T. Houlsby, Application of thermomechnical principles to the modelling of geotechnical materials,, Proceedings of the Royal Society of London, 453 (1997), 1975.   Google Scholar

[8]

G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws,, Comptes Rendus de l'Académie des Sciences, 314 (1992), 125.   Google Scholar

[9]

G. de Saxcé and L. Bousshine, Limit analysis theorems for implicit standard materials: applications to the unilateral contact with dry friction and non-associated flow rules in soils and rocks,, Int. J. Mech. Sci., 40 (1998), 387.  doi: 10.1016/S0020-7403(97)00058-1.  Google Scholar

[10]

I. Einav, A. M. Puzrin and G. T. Houlsby, Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces,, Int. J. Numer. Anal. Meth. Geomech., 27 (2003), 837.  doi: 10.1002/nag.303.  Google Scholar

[11]

M. A. Eisenberg and A. Phillips, A theory of plasticity with non-coincident yield and loading surfaces,, Acta Mechanica, 11 (1971), 247.  doi: 10.1007/BF01176559.  Google Scholar

[12]

S. Erlicher and N. Point, Thermodynamic admissibility of Bouc-Wen type hysteresis models,, Comptes Rendus Manique, 332 (2004), 51.  doi: 10.1016/j.crme.2003.10.009.  Google Scholar

[13]

S. Erlicher and N. Point, On the associativity of the Drucker-Prager model,, VIII International Conference on Computational Plasticity - Fundamentals and Applications, (2005).   Google Scholar

[14]

S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: a new interpretation based on generalized normality assumption,, International Journal of Solids and Structures, 43 (2006), 4175.   Google Scholar

[15]

S. Erlicher and O. S. Bursi, Bouc-Wen-type models with stiffness degradation: Thermodynamic analysis and applications,, Journal of Engineering Mechanics ASCE, 134 (2008), 843.   Google Scholar

[16]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag, (2002).   Google Scholar

[17]

M. Frémond, "Collisions,", Edizioni del Dipartimento di Ingegneria Civile dell'Universita di Roma Tor Vergata, (2007).   Google Scholar

[18]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés,, Journal de Mécanique, 1 (1975), 39.   Google Scholar

[19]

M. Hjiaj, J. Fortin and G. de Saxcé, A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex,, International Journal of Engineering Science, 41 (2003), 1109.  doi: 10.1016/S0020-7225(02)00376-2.  Google Scholar

[20]

G. T. Houlsby and A. M. Puzrin, A thermomechnical framework for constitutive models for rate-independent dissipative materials,, Int. J. Plasticity, 16 (2000), 1017.  doi: 10.1016/S0749-6419(99)00073-X.  Google Scholar

[21]

M. Jirek and Z. P. Bažant, "Inelastic Analysis of Structures,", Wiley, (2002).   Google Scholar

[22]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials,", Cambridge University Press, ().   Google Scholar

[23]

J. Lubliner, R. L. Taylor and F. Auricchio, A new model of generalized plasticity,, International Journal of Solids and Structures, 30 (1993), 3171.  doi: 10.1016/0020-7683(93)90146-X.  Google Scholar

[24]

J. Lubliner and R. L. Taylor, Two material models for cyclic plasticty: non linear kinematic hardening and generalized plasticity,, International Journal of Plasticity, 11 (1995), 65.  doi: 10.1016/0749-6419(94)00039-5.  Google Scholar

[25]

D. G. Luenberger, "Linear and Nonlinear Programming,", Addison-Wesley Publishing Company, ().   Google Scholar

[26]

J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité,, Comptes Rendus de l'Académie des Sciences, 271 (1970), 608.   Google Scholar

[27]

N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage,, Journal of Engineering Mechanics ASCE, 134 (2008), 832.   Google Scholar

[28]

A. M. Puzrin and G. T. Houlsby, A thermomechanical framework for rate-independent dissipative materials with internal functions,, Int. Jour. of Plasticity, 17 (2001), 1147.  doi: 10.1016/S0749-6419(00)00083-8.  Google Scholar

[29]

A. M. Puzrin and G. T. Houlsby, Fundamentals of kinematic hardening hyperplasticity,, Int. Jour. of Solids and Structures, 38 (2001), 3771.   Google Scholar

[30]

R. T. Rockafellar, "Convex Analysis,", Princeton University Press, (1969).   Google Scholar

[31]

K. C. Valanis, A theory of viscoplasticity without a yield surface,, Archiwum Mechaniki Stossowanej, 23 (1971), 517.   Google Scholar

[32]

K. C. Valanis, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory,, Archiwum Mechaniki Stossowanej, 32 (1980), 171.   Google Scholar

[33]

H. Ziegler, Discussion of some objections to thermodynamic orthogonality,, Ingenieur-Archiv, 50 (1981), 149.  doi: 10.1007/BF00536486.  Google Scholar

[34]

H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function,, Advances in Applied Mechanics, 25 (1987), 183.  doi: 10.1016/S0065-2156(08)70278-3.  Google Scholar

[1]

Tomáš Roubíček, Giuseppe Tomassetti. Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2313-2333. doi: 10.3934/dcdsb.2014.19.2313

[2]

Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic & Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945

[3]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[4]

Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004

[5]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[6]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[7]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[8]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[9]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[10]

Eric Bedford, Serge Cantat, Kyounghee Kim. Pseudo-automorphisms with no invariant foliation. Journal of Modern Dynamics, 2014, 8 (2) : 221-250. doi: 10.3934/jmd.2014.8.221

[11]

Jorge Tejero. Reconstruction of rough potentials in the plane. Inverse Problems & Imaging, 2019, 13 (4) : 863-878. doi: 10.3934/ipi.2019039

[12]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[13]

Chris Johnson, Martin Schmoll. Pseudo-Anosov eigenfoliations on Panov planes. Electronic Research Announcements, 2014, 21: 89-108. doi: 10.3934/era.2014.21.89

[14]

Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040

[15]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[16]

Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109

[17]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

[18]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

[19]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[20]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]