April  2013, 6(2): 567-590. doi: 10.3934/dcdss.2013.6.567

Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact

1. 

Conservatoire National des Arts et Métiers CNAM, 292 rue Saint-Martin, Département de Mathématiques (442), 75141 Paris, Cedex 03, France

2. 

Direction Technique et Scientifique, EGIS Industries, 4, rue Dolores Ibarruri, 93188 Montreuil Cedex, France

Received  July 2011 Revised  December 2011 Published  November 2012

Pseudo-potentials are very useful tools to define thermodynamically admissible constitutive rules. Bipotentials are convenient for numerical purposes, in particular for non-associative rules. Unfortunately, these functionals are not always easy to construct starting from a given constitutive law. This work proposes a procedure to find the pseudo-potentials and the bipotential starting from the usual description of a non-associative constitutive law. This method is applied to different non-associative plasticity models such as the Drucker-Prager model and the non-linear kinematic hardening model. The same procedure allows one to obtain the pseudo-potentials of an endochronic plasticity model. The pseudo-potentials for the contact problem with dissipation are constructed using the same ideas. For all these non-associative constitutive laws a bipotential is then automatically deduced.
Citation: Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567
References:
[1]

P. Armstrong and C. Frederick, A mathematical representation of the multiaxial Bauschinger effect, G. E. G. B. Report RD/B/N 731, (1966).

[2]

Z. P. Bažant and P. D. Bath, Endochronic theory of inelasticity and failure of concrete, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 701-722.

[3]

Z. P. Bažant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 225-238.

[4]

Z. P. Bažant, Endochronic inelasticity and incremental plasticity, International Journal of Solids and Structures, 14 (1978), 691-714. doi: 10.1016/0020-7683(78)90029-X.

[5]

G. Bodovillé and G. de Saxcé., Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach, European Journal of Mechanics A/Solids, 20 (2001), 99-112. doi: 10.1016/S0997-7538(00)01109-8.

[6]

J. L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, 7 (1991), 1-15.

[7]

I. F. Collins and G. T. Houlsby, Application of thermomechnical principles to the modelling of geotechnical materials, Proceedings of the Royal Society of London, Series A, 453 (1997), 1975-2001.

[8]

G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de l'Académie des Sciences, Série II, 314 (1992), 125-129.

[9]

G. de Saxcé and L. Bousshine, Limit analysis theorems for implicit standard materials: applications to the unilateral contact with dry friction and non-associated flow rules in soils and rocks, Int. J. Mech. Sci., 40 n4 (1998), 387-398. doi: 10.1016/S0020-7403(97)00058-1.

[10]

I. Einav, A. M. Puzrin and G. T. Houlsby, Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces, Int. J. Numer. Anal. Meth. Geomech., 27 (2003), 837-858. doi: 10.1002/nag.303.

[11]

M. A. Eisenberg and A. Phillips, A theory of plasticity with non-coincident yield and loading surfaces, Acta Mechanica, 11 (1971), 247-260. doi: 10.1007/BF01176559.

[12]

S. Erlicher and N. Point, Thermodynamic admissibility of Bouc-Wen type hysteresis models, Comptes Rendus Manique, 332 (2004), 51-57. doi: 10.1016/j.crme.2003.10.009.

[13]

S. Erlicher and N. Point, On the associativity of the Drucker-Prager model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, (2005).

[14]

S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: a new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200.

[15]

S. Erlicher and O. S. Bursi, Bouc-Wen-type models with stiffness degradation: Thermodynamic analysis and applications, Journal of Engineering Mechanics ASCE, 134 (2008), 843-855.

[16]

M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

[17]

M. Frémond, "Collisions," Edizioni del Dipartimento di Ingegneria Civile dell'Universita di Roma Tor Vergata, 2007.

[18]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 1 (1975), 39-63. (in French).

[19]

M. Hjiaj, J. Fortin and G. de Saxcé, A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex, International Journal of Engineering Science, 41 (2003), 1109-1143. doi: 10.1016/S0020-7225(02)00376-2.

[20]

G. T. Houlsby and A. M. Puzrin, A thermomechnical framework for constitutive models for rate-independent dissipative materials, Int. J. Plasticity, 16 (2000), 1017-1047. doi: 10.1016/S0749-6419(99)00073-X.

[21]

M. Jirek and Z. P. Bažant, "Inelastic Analysis of Structures," Wiley, Chichester, 2002.

[22]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials," Cambridge University Press, Cambridge,1990.

[23]

J. Lubliner, R. L. Taylor and F. Auricchio, A new model of generalized plasticity, International Journal of Solids and Structures, 30 (1993), 3171-3184. doi: 10.1016/0020-7683(93)90146-X.

[24]

J. Lubliner and R. L. Taylor, Two material models for cyclic plasticty: non linear kinematic hardening and generalized plasticity, International Journal of Plasticity, 11 (1995), 65-98. doi: 10.1016/0749-6419(94)00039-5.

[25]

D. G. Luenberger, "Linear and Nonlinear Programming," Addison-Wesley Publishing Company, Menlo Park, California,1984.

[26]

J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Sie II, 271 (1970), 608-611. (in French).

[27]

N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842.

[28]

A. M. Puzrin and G. T. Houlsby, A thermomechanical framework for rate-independent dissipative materials with internal functions, Int. Jour. of Plasticity, 17 (2001), 1147-1165. doi: 10.1016/S0749-6419(00)00083-8.

[29]

A. M. Puzrin and G. T. Houlsby, Fundamentals of kinematic hardening hyperplasticity, Int. Jour. of Solids and Structures, 38 (2001), 3771-3794.

[30]

R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1969.

[31]

K. C. Valanis, A theory of viscoplasticity without a yield surface, Archiwum Mechaniki Stossowanej, 23 (1971), 517-551.

[32]

K. C. Valanis, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory, Archiwum Mechaniki Stossowanej, 32 (1980), 171-191.

[33]

H. Ziegler, Discussion of some objections to thermodynamic orthogonality, Ingenieur-Archiv, 50 (1981), 149-164. doi: 10.1007/BF00536486.

[34]

H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-238. doi: 10.1016/S0065-2156(08)70278-3.

show all references

References:
[1]

P. Armstrong and C. Frederick, A mathematical representation of the multiaxial Bauschinger effect, G. E. G. B. Report RD/B/N 731, (1966).

[2]

Z. P. Bažant and P. D. Bath, Endochronic theory of inelasticity and failure of concrete, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 701-722.

[3]

Z. P. Bažant and R. J. Krizek, Endochronic constitutive law for liquefaction of sand, Journal of the Engineering Mechanics Division ASCE, 102 (1976), 225-238.

[4]

Z. P. Bažant, Endochronic inelasticity and incremental plasticity, International Journal of Solids and Structures, 14 (1978), 691-714. doi: 10.1016/0020-7683(78)90029-X.

[5]

G. Bodovillé and G. de Saxcé., Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach, European Journal of Mechanics A/Solids, 20 (2001), 99-112. doi: 10.1016/S0997-7538(00)01109-8.

[6]

J. L. Chaboche, On some modifications of kinematic hardening to improve the description of ratchetting effects, International Journal of Plasticity, 7 (1991), 1-15.

[7]

I. F. Collins and G. T. Houlsby, Application of thermomechnical principles to the modelling of geotechnical materials, Proceedings of the Royal Society of London, Series A, 453 (1997), 1975-2001.

[8]

G. de Saxcé, A generalization of Fenchel's inequality and its applications to the constitutive laws, Comptes Rendus de l'Académie des Sciences, Série II, 314 (1992), 125-129.

[9]

G. de Saxcé and L. Bousshine, Limit analysis theorems for implicit standard materials: applications to the unilateral contact with dry friction and non-associated flow rules in soils and rocks, Int. J. Mech. Sci., 40 n4 (1998), 387-398. doi: 10.1016/S0020-7403(97)00058-1.

[10]

I. Einav, A. M. Puzrin and G. T. Houlsby, Numerical studies of hyperplasticity with single, multiple and a continuous field of yield surfaces, Int. J. Numer. Anal. Meth. Geomech., 27 (2003), 837-858. doi: 10.1002/nag.303.

[11]

M. A. Eisenberg and A. Phillips, A theory of plasticity with non-coincident yield and loading surfaces, Acta Mechanica, 11 (1971), 247-260. doi: 10.1007/BF01176559.

[12]

S. Erlicher and N. Point, Thermodynamic admissibility of Bouc-Wen type hysteresis models, Comptes Rendus Manique, 332 (2004), 51-57. doi: 10.1016/j.crme.2003.10.009.

[13]

S. Erlicher and N. Point, On the associativity of the Drucker-Prager model, VIII International Conference on Computational Plasticity - Fundamentals and Applications, Barcelona, Spain, (2005).

[14]

S. Erlicher and N. Point, Endochronic theory, non-linear kinematic hardening rule and generalized plasticity: a new interpretation based on generalized normality assumption, International Journal of Solids and Structures, 43 (2006), 4175-4200.

[15]

S. Erlicher and O. S. Bursi, Bouc-Wen-type models with stiffness degradation: Thermodynamic analysis and applications, Journal of Engineering Mechanics ASCE, 134 (2008), 843-855.

[16]

M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

[17]

M. Frémond, "Collisions," Edizioni del Dipartimento di Ingegneria Civile dell'Universita di Roma Tor Vergata, 2007.

[18]

B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés, Journal de Mécanique, 1 (1975), 39-63. (in French).

[19]

M. Hjiaj, J. Fortin and G. de Saxcé, A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex, International Journal of Engineering Science, 41 (2003), 1109-1143. doi: 10.1016/S0020-7225(02)00376-2.

[20]

G. T. Houlsby and A. M. Puzrin, A thermomechnical framework for constitutive models for rate-independent dissipative materials, Int. J. Plasticity, 16 (2000), 1017-1047. doi: 10.1016/S0749-6419(99)00073-X.

[21]

M. Jirek and Z. P. Bažant, "Inelastic Analysis of Structures," Wiley, Chichester, 2002.

[22]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials," Cambridge University Press, Cambridge,1990.

[23]

J. Lubliner, R. L. Taylor and F. Auricchio, A new model of generalized plasticity, International Journal of Solids and Structures, 30 (1993), 3171-3184. doi: 10.1016/0020-7683(93)90146-X.

[24]

J. Lubliner and R. L. Taylor, Two material models for cyclic plasticty: non linear kinematic hardening and generalized plasticity, International Journal of Plasticity, 11 (1995), 65-98. doi: 10.1016/0749-6419(94)00039-5.

[25]

D. G. Luenberger, "Linear and Nonlinear Programming," Addison-Wesley Publishing Company, Menlo Park, California,1984.

[26]

J. J. Moreau, Sur les lois de frottement, de plasticité et de viscosité, Comptes Rendus de l'Académie des Sciences, Sie II, 271 (1970), 608-611. (in French).

[27]

N. Point and S. Erlicher, Pseudo-potentials and loading surfaces for an endochronic plasticity theory with isotropic damage, Journal of Engineering Mechanics ASCE, 134 (2008), 832-842.

[28]

A. M. Puzrin and G. T. Houlsby, A thermomechanical framework for rate-independent dissipative materials with internal functions, Int. Jour. of Plasticity, 17 (2001), 1147-1165. doi: 10.1016/S0749-6419(00)00083-8.

[29]

A. M. Puzrin and G. T. Houlsby, Fundamentals of kinematic hardening hyperplasticity, Int. Jour. of Solids and Structures, 38 (2001), 3771-3794.

[30]

R. T. Rockafellar, "Convex Analysis," Princeton University Press, Princeton, 1969.

[31]

K. C. Valanis, A theory of viscoplasticity without a yield surface, Archiwum Mechaniki Stossowanej, 23 (1971), 517-551.

[32]

K. C. Valanis, Fundamental consequences of a new intrinsic time measure. Plasticity as a limit of the endochronic theory, Archiwum Mechaniki Stossowanej, 32 (1980), 171-191.

[33]

H. Ziegler, Discussion of some objections to thermodynamic orthogonality, Ingenieur-Archiv, 50 (1981), 149-164. doi: 10.1007/BF00536486.

[34]

H. Ziegler and C. Wehrli, The derivation of constitutive equations from the free energy and the dissipation function, Advances in Applied Mechanics, 25 (1987), 183-238. doi: 10.1016/S0065-2156(08)70278-3.

[1]

Tomáš Roubíček, Giuseppe Tomassetti. Thermomechanics of hydrogen storage in metallic hydrides: Modeling and analysis. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2313-2333. doi: 10.3934/dcdsb.2014.19.2313

[2]

Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic and Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945

[3]

Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163

[4]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[5]

Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004

[6]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[7]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[8]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29 (5) : 2915-2944. doi: 10.3934/era.2021019

[9]

Lilun Zhang, Le Li, Chuangxia Huang. Positive stability analysis of pseudo almost periodic solutions for HDCNNs accompanying $ D $ operator. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1651-1667. doi: 10.3934/dcdss.2021160

[10]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[11]

Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389

[12]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems and Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[13]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[14]

Jorge Tejero. Reconstruction of rough potentials in the plane. Inverse Problems and Imaging, 2019, 13 (4) : 863-878. doi: 10.3934/ipi.2019039

[15]

Eric Bedford, Serge Cantat, Kyounghee Kim. Pseudo-automorphisms with no invariant foliation. Journal of Modern Dynamics, 2014, 8 (2) : 221-250. doi: 10.3934/jmd.2014.8.221

[16]

Egor Shelukhin. Pseudo-rotations and Steenrod squares. Journal of Modern Dynamics, 2020, 16: 289-304. doi: 10.3934/jmd.2020010

[17]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial and Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[18]

Roland Hildebrand. Barriers on projective convex sets. Conference Publications, 2011, 2011 (Special) : 672-683. doi: 10.3934/proc.2011.2011.672

[19]

J. Douglas Wright. On the spectrum of the superposition of separated potentials.. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 273-281. doi: 10.3934/dcdsb.2013.18.273

[20]

Huan-Zhen Chen, Zhongxue Lü. Positive solutions to involving Wolff potentials. Communications on Pure and Applied Analysis, 2014, 13 (2) : 773-788. doi: 10.3934/cpaa.2014.13.773

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (112)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]