April  2013, 6(2): 591-610. doi: 10.3934/dcdss.2013.6.591

A quasistatic mixed-mode delamination model

1. 

Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8

2. 

Group of Elasticity and Strength of Materials, Dept. of Continuum Mechanics, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, ES-41092 Sevilla, Spain, Spain

Received  June 2011 Revised  November 2011 Published  November 2012

The quasistatic rate-independent evolution of delamination in the so-called mixed-mode, i.e. distinguishing opening (mode I) from shearing (mode II), devised in [45], is described in detail and rigorously analysed as far as existence of the so-called energetic solutions concerns. The model formulated at small strains uses a delamination parameter of Frémond's type combined with a concept of interface plasticity, and is associative in the sense that the dissipative force driving delamination has a potential which depends in a 1-homogeneous way only on rates of internal parameters. A sample numerical simulation documents that this model can really produce mode-mixity-sensitive delamination.
Citation: Tomáš Roubíček, V. Mantič, C. G. Panagiotopoulos. A quasistatic mixed-mode delamination model. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 591-610. doi: 10.3934/dcdss.2013.6.591
References:
[1]

E. C. Aifantis, On the microstructural origin of certain inelastic models,, ASME J. Eng. Mater. Technol., 106 (1984), 326.  doi: 10.1115/1.3225725.  Google Scholar

[2]

L. Banks-Sills and D. Ashkenazi, A note on fracture criteria for interface fracture,, Intl. J. Fracture, 103 (2000), 177.  doi: 10.1023/A:1007612613338.  Google Scholar

[3]

Z. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress,, J. Engrg. Mech., 128 (2002), 1119.  doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119).  Google Scholar

[4]

S. Bennati, M. Colleluori, D. Corigliano and P. Valvo, An enhanced beam-theory model of the asymmetric double cantilever beam (adcb) test for composite laminates,, Composites Science and Technology, 69 (2009), 1735.  doi: 10.1016/j.compscitech.2009.01.019.  Google Scholar

[5]

M. A. Biot, Thermoelasticity and irreversible thermodynamics,, J. Appl. Phys., 27 (1956), 240.  doi: 10.1063/1.1722351.  Google Scholar

[6]

M. A. Biot, "Mechanics of Incremental Deformations,", Wiley, (1965).  doi: 10.1063/1.3047001.  Google Scholar

[7]

E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion,, Indiana Univ. Math. J., 56 (2007), 2787.  doi: 10.1512/iumj.2007.56.3079.  Google Scholar

[8]

E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion,, Math. Meth. Appl. Sci., 31 (2008), 1029.  doi: 10.1002/mma.957.  Google Scholar

[9]

B. Bourdin, G. A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture,, J. Mech. Phys. Solids, 48 (2000), 797.  doi: 10.1016/S0022-5096(99)00028-9.  Google Scholar

[10]

P. Cornetti and A. Carpinteri, Modelling the FRP-concrete delamination by means of an exponential softening law,, Engineering Structures, 33 (2011), 1988.  doi: 10.1016/j.engstruct.2011.02.036.  Google Scholar

[11]

G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Rational Mech. Anal., 176 (2005), 165.  doi: 10.1007/s00205-004-0351-4.  Google Scholar

[12]

A. Evans, M. Rühle, B. Dalgleish and P. Charalambides, The fracture energy of bimaterial interfaces,, Metallurgical Transactions A, 21A (1990), 2419.  doi: 10.1007/BF02646986.  Google Scholar

[13]

M. Frémond, Dissipation dans l'adhrence des solides,, C. R. Acad. Sci., 300 (1985), 709.   Google Scholar

[14]

M. Frémond, Contact with adhesion,, in, (1988).   Google Scholar

[15]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag, (2002).   Google Scholar

[16]

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power,, Internat. J. Solids Structures, 33 (1996), 1083.  doi: 10.1016/0020-7683(95)00074-7.  Google Scholar

[17]

E. Fried and M. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales,, Arch. Rational Mech. Anal., 182 (2006), 513.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[18]

A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Royal Soc. London Ser. A. Math. Phys. Eng. Sci., 221 (1921), 163.  doi: 10.1098/rsta.1921.0006.  Google Scholar

[19]

W. Han and B. D. Reddy, "Plasticity (Mathematical Theory and Numerical Analysis),", Springer-Verlag, (1999).   Google Scholar

[20]

J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials,, Advances in Applied Mechanics, 29 (1992), 63.  doi: 10.1016/S0065-2156(08)70164-9.  Google Scholar

[21]

M. Jirásek and J. Zeman, Localization study of non-local energetic damage model,, , (2008).   Google Scholar

[22]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Meth. Appl. Sci. (M$^3$AS), 18 (2008), 1529.  doi: 10.1142/S0218202508003121.  Google Scholar

[23]

M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem,, Math. Mechanics Solids, 11 (2006), 423.   Google Scholar

[24]

K. Liechti and Y. Chai, Asymmetric shielding in interfacial fracture under in-plane shear,, J. Appl. Mech., 59 (1992), 295.  doi: 10.1115/1.2899520.  Google Scholar

[25]

V. Mantič, Discussion on the reference length and mode mixity for a bimaterial interface,, J. Engr. Mater. Technology, 130 (2008), 045501.   Google Scholar

[26]

A. Mielke, Evolution in rate-independent systems (Ch. 6),, in, (2005), 461.  doi: 10.1016/S1874-5717(06)80009-5.  Google Scholar

[27]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, in, (2010), 87.  doi: 10.1037/a0020489.  Google Scholar

[28]

A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, Math. Models Meth. Appl. Sci., 16 (2006), 177.  doi: 10.1142/S021820250600111X.  Google Scholar

[29]

A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity,, Math. Model. Numer. Anal. (M2AN), 43 (2009), 399.  doi: 10.1051/m2an/2009009.  Google Scholar

[30]

A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains,, J. Elasticity, 109 (2012), 235.  doi: 10.1007/s10659-012-9379-0.  Google Scholar

[31]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Part. Diff. Eqns., 31 (2008), 387.  doi: 10.1007/s00526-007-0119-4.  Google Scholar

[32]

A. Mielke, T. Roubíček and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics,, Computer Methods Appl. Mech. Engr., 199 (2009), 1242.  doi: 10.1016/j.cma.2009.09.020.  Google Scholar

[33]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis,, in, (1999), 117.   Google Scholar

[34]

A. Mielke and F. Theil, On rate-independent hysteresis models,, Nonl. Diff. Eqns. Appl. (NoDEA), 11 (2004), 151.   Google Scholar

[35]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Rational Mech. Anal., 162 (2002), 137.  doi: 10.1007/s002050200194.  Google Scholar

[36]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895.  doi: 10.1142/S0218202508003236.  Google Scholar

[37]

C. Panagiotopoulos, "Open BEM Project,", 2010. Available from: , ().   Google Scholar

[38]

C. Panagiotopoulos, V. Mantič and T. Roubíček, BEM solution of delamination problems using an interface damage and plasticity model,, Computational Mechanics, ().   Google Scholar

[39]

F. París and J. Cañas, "Boundary Element Method,", Oxford University Press, (1997).   Google Scholar

[40]

P. Podio-Guidugli and G. Vergara Caffarelli, Surface interaction potentials in elasticity,, Arch. Rat. Mech. Anal., 109 (1990), 343.  doi: 10.1007/BF00380381.  Google Scholar

[41]

N. Point, Unilateral contact with adherence,, Math. Methods Appl. Sci., 10 (1988), 367.  doi: 10.1002/mma.1670100403.  Google Scholar

[42]

N. Point and E. Sacco, A delamination model for laminated composites,, Math. Methods Appl. Sci., 33 (1996), 483.   Google Scholar

[43]

N. Point and E. Sacco, Mathematical properties of a delamination model,, Math. Comput. Modelling, 28 (1998), 359.  doi: 10.1016/S0895-7177(98)00127-7.  Google Scholar

[44]

R. Rossi and T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis,, Preprints: No.26/2011 at Univ. Brescia, (1110).   Google Scholar

[45]

T. Roubíček, M. Kružík and J. Zeman, "Delamination and Adhesive Contact Models and Their Mathematical Analysis and Numerical Treatment,", in, (2013), 978.   Google Scholar

[46]

T. Roubíček, L. Scardia and C. Zanini, Quasistatic delamination problem,, Cont. Mech. Thermodynam, 21 (2009), 223.   Google Scholar

[47]

J. Simo and T. Hughes, "Computational Inelasticity,", Springer, (1998).   Google Scholar

[48]

J. Swadener, K. Liechti and A. deLozanne, The intrinsic toughness and adhesion mechanism of a glass/epoxy interface,, J. Mech. Phys. Solids, 47 (1999), 223.  doi: 10.1016/S0022-5096(98)00084-2.  Google Scholar

[49]

L. Távara, V. Mantič, E. Graciani, J. Cañas and F. París, Analysis of a crack in a thin adhesive layer between orthotropic materials: An application to composite interlaminar fracture toughness test,, CMES - Computer Modeling in Engineering and Sciences, 58 (2010), 247.   Google Scholar

[50]

L. Távara, V. Mantič, E. Graciani and F. París, BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model,, Engineering Analysis with Boundary Elements, 35 (2011), 207.   Google Scholar

[51]

M. Thomas, "Rate-Independent Damage Processes in Nonlinearly Elastic Materials,", PhD thesis, (2010).   Google Scholar

[52]

M. Thomas, Quasistatic damage evolution with spatial BV-regularization,, Disc. Cont. Dynam. Syst. - S, 6 (2013), 235.  doi: 10.1097/FPC.0b013e32833d1011.  Google Scholar

[53]

M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results,, Z. angew. Math. Mech. (ZAMM), 90 (2010), 88.   Google Scholar

[54]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Matem. Ital., 2 (2009), 1.   Google Scholar

[55]

R. Toupin, Elastic materials with couple stresses,, Arch. Rat. Mech. Anal., 11 (1962), 385.  doi: 10.1007/BF00253945.  Google Scholar

[56]

V. Tvergaard and J. Hutchinson, The influence of plasticity on mixed mode interface toughness,, J. Mech. Phys. Solids, 41 (1993), 1119.  doi: 10.1016/0022-5096(93)90057-M.  Google Scholar

show all references

References:
[1]

E. C. Aifantis, On the microstructural origin of certain inelastic models,, ASME J. Eng. Mater. Technol., 106 (1984), 326.  doi: 10.1115/1.3225725.  Google Scholar

[2]

L. Banks-Sills and D. Ashkenazi, A note on fracture criteria for interface fracture,, Intl. J. Fracture, 103 (2000), 177.  doi: 10.1023/A:1007612613338.  Google Scholar

[3]

Z. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress,, J. Engrg. Mech., 128 (2002), 1119.  doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119).  Google Scholar

[4]

S. Bennati, M. Colleluori, D. Corigliano and P. Valvo, An enhanced beam-theory model of the asymmetric double cantilever beam (adcb) test for composite laminates,, Composites Science and Technology, 69 (2009), 1735.  doi: 10.1016/j.compscitech.2009.01.019.  Google Scholar

[5]

M. A. Biot, Thermoelasticity and irreversible thermodynamics,, J. Appl. Phys., 27 (1956), 240.  doi: 10.1063/1.1722351.  Google Scholar

[6]

M. A. Biot, "Mechanics of Incremental Deformations,", Wiley, (1965).  doi: 10.1063/1.3047001.  Google Scholar

[7]

E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion,, Indiana Univ. Math. J., 56 (2007), 2787.  doi: 10.1512/iumj.2007.56.3079.  Google Scholar

[8]

E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion,, Math. Meth. Appl. Sci., 31 (2008), 1029.  doi: 10.1002/mma.957.  Google Scholar

[9]

B. Bourdin, G. A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture,, J. Mech. Phys. Solids, 48 (2000), 797.  doi: 10.1016/S0022-5096(99)00028-9.  Google Scholar

[10]

P. Cornetti and A. Carpinteri, Modelling the FRP-concrete delamination by means of an exponential softening law,, Engineering Structures, 33 (2011), 1988.  doi: 10.1016/j.engstruct.2011.02.036.  Google Scholar

[11]

G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Rational Mech. Anal., 176 (2005), 165.  doi: 10.1007/s00205-004-0351-4.  Google Scholar

[12]

A. Evans, M. Rühle, B. Dalgleish and P. Charalambides, The fracture energy of bimaterial interfaces,, Metallurgical Transactions A, 21A (1990), 2419.  doi: 10.1007/BF02646986.  Google Scholar

[13]

M. Frémond, Dissipation dans l'adhrence des solides,, C. R. Acad. Sci., 300 (1985), 709.   Google Scholar

[14]

M. Frémond, Contact with adhesion,, in, (1988).   Google Scholar

[15]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag, (2002).   Google Scholar

[16]

M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power,, Internat. J. Solids Structures, 33 (1996), 1083.  doi: 10.1016/0020-7683(95)00074-7.  Google Scholar

[17]

E. Fried and M. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales,, Arch. Rational Mech. Anal., 182 (2006), 513.  doi: 10.1007/s00205-006-0015-7.  Google Scholar

[18]

A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Royal Soc. London Ser. A. Math. Phys. Eng. Sci., 221 (1921), 163.  doi: 10.1098/rsta.1921.0006.  Google Scholar

[19]

W. Han and B. D. Reddy, "Plasticity (Mathematical Theory and Numerical Analysis),", Springer-Verlag, (1999).   Google Scholar

[20]

J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials,, Advances in Applied Mechanics, 29 (1992), 63.  doi: 10.1016/S0065-2156(08)70164-9.  Google Scholar

[21]

M. Jirásek and J. Zeman, Localization study of non-local energetic damage model,, , (2008).   Google Scholar

[22]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Meth. Appl. Sci. (M$^3$AS), 18 (2008), 1529.  doi: 10.1142/S0218202508003121.  Google Scholar

[23]

M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem,, Math. Mechanics Solids, 11 (2006), 423.   Google Scholar

[24]

K. Liechti and Y. Chai, Asymmetric shielding in interfacial fracture under in-plane shear,, J. Appl. Mech., 59 (1992), 295.  doi: 10.1115/1.2899520.  Google Scholar

[25]

V. Mantič, Discussion on the reference length and mode mixity for a bimaterial interface,, J. Engr. Mater. Technology, 130 (2008), 045501.   Google Scholar

[26]

A. Mielke, Evolution in rate-independent systems (Ch. 6),, in, (2005), 461.  doi: 10.1016/S1874-5717(06)80009-5.  Google Scholar

[27]

A. Mielke, Differential, energetic and metric formulations for rate-independent processes,, in, (2010), 87.  doi: 10.1037/a0020489.  Google Scholar

[28]

A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity,, Math. Models Meth. Appl. Sci., 16 (2006), 177.  doi: 10.1142/S021820250600111X.  Google Scholar

[29]

A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity,, Math. Model. Numer. Anal. (M2AN), 43 (2009), 399.  doi: 10.1051/m2an/2009009.  Google Scholar

[30]

A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains,, J. Elasticity, 109 (2012), 235.  doi: 10.1007/s10659-012-9379-0.  Google Scholar

[31]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Part. Diff. Eqns., 31 (2008), 387.  doi: 10.1007/s00526-007-0119-4.  Google Scholar

[32]

A. Mielke, T. Roubíček and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics,, Computer Methods Appl. Mech. Engr., 199 (2009), 1242.  doi: 10.1016/j.cma.2009.09.020.  Google Scholar

[33]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis,, in, (1999), 117.   Google Scholar

[34]

A. Mielke and F. Theil, On rate-independent hysteresis models,, Nonl. Diff. Eqns. Appl. (NoDEA), 11 (2004), 151.   Google Scholar

[35]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle,, Arch. Rational Mech. Anal., 162 (2002), 137.  doi: 10.1007/s002050200194.  Google Scholar

[36]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895.  doi: 10.1142/S0218202508003236.  Google Scholar

[37]

C. Panagiotopoulos, "Open BEM Project,", 2010. Available from: , ().   Google Scholar

[38]

C. Panagiotopoulos, V. Mantič and T. Roubíček, BEM solution of delamination problems using an interface damage and plasticity model,, Computational Mechanics, ().   Google Scholar

[39]

F. París and J. Cañas, "Boundary Element Method,", Oxford University Press, (1997).   Google Scholar

[40]

P. Podio-Guidugli and G. Vergara Caffarelli, Surface interaction potentials in elasticity,, Arch. Rat. Mech. Anal., 109 (1990), 343.  doi: 10.1007/BF00380381.  Google Scholar

[41]

N. Point, Unilateral contact with adherence,, Math. Methods Appl. Sci., 10 (1988), 367.  doi: 10.1002/mma.1670100403.  Google Scholar

[42]

N. Point and E. Sacco, A delamination model for laminated composites,, Math. Methods Appl. Sci., 33 (1996), 483.   Google Scholar

[43]

N. Point and E. Sacco, Mathematical properties of a delamination model,, Math. Comput. Modelling, 28 (1998), 359.  doi: 10.1016/S0895-7177(98)00127-7.  Google Scholar

[44]

R. Rossi and T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis,, Preprints: No.26/2011 at Univ. Brescia, (1110).   Google Scholar

[45]

T. Roubíček, M. Kružík and J. Zeman, "Delamination and Adhesive Contact Models and Their Mathematical Analysis and Numerical Treatment,", in, (2013), 978.   Google Scholar

[46]

T. Roubíček, L. Scardia and C. Zanini, Quasistatic delamination problem,, Cont. Mech. Thermodynam, 21 (2009), 223.   Google Scholar

[47]

J. Simo and T. Hughes, "Computational Inelasticity,", Springer, (1998).   Google Scholar

[48]

J. Swadener, K. Liechti and A. deLozanne, The intrinsic toughness and adhesion mechanism of a glass/epoxy interface,, J. Mech. Phys. Solids, 47 (1999), 223.  doi: 10.1016/S0022-5096(98)00084-2.  Google Scholar

[49]

L. Távara, V. Mantič, E. Graciani, J. Cañas and F. París, Analysis of a crack in a thin adhesive layer between orthotropic materials: An application to composite interlaminar fracture toughness test,, CMES - Computer Modeling in Engineering and Sciences, 58 (2010), 247.   Google Scholar

[50]

L. Távara, V. Mantič, E. Graciani and F. París, BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model,, Engineering Analysis with Boundary Elements, 35 (2011), 207.   Google Scholar

[51]

M. Thomas, "Rate-Independent Damage Processes in Nonlinearly Elastic Materials,", PhD thesis, (2010).   Google Scholar

[52]

M. Thomas, Quasistatic damage evolution with spatial BV-regularization,, Disc. Cont. Dynam. Syst. - S, 6 (2013), 235.  doi: 10.1097/FPC.0b013e32833d1011.  Google Scholar

[53]

M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results,, Z. angew. Math. Mech. (ZAMM), 90 (2010), 88.   Google Scholar

[54]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Matem. Ital., 2 (2009), 1.   Google Scholar

[55]

R. Toupin, Elastic materials with couple stresses,, Arch. Rat. Mech. Anal., 11 (1962), 385.  doi: 10.1007/BF00253945.  Google Scholar

[56]

V. Tvergaard and J. Hutchinson, The influence of plasticity on mixed mode interface toughness,, J. Mech. Phys. Solids, 41 (1993), 1119.  doi: 10.1016/0022-5096(93)90057-M.  Google Scholar

[1]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[2]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[3]

Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167

[4]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[5]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[6]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[7]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[8]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[9]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[10]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[11]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[12]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[13]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[14]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[15]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[16]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[17]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[18]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[19]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[20]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]