Advanced Search
Article Contents
Article Contents

A quasistatic mixed-mode delamination model

Abstract Related Papers Cited by
  • The quasistatic rate-independent evolution of delamination in the so-called mixed-mode, i.e. distinguishing opening (mode I) from shearing (mode II), devised in [45], is described in detail and rigorously analysed as far as existence of the so-called energetic solutions concerns. The model formulated at small strains uses a delamination parameter of Frémond's type combined with a concept of interface plasticity, and is associative in the sense that the dissipative force driving delamination has a potential which depends in a 1-homogeneous way only on rates of internal parameters. A sample numerical simulation documents that this model can really produce mode-mixity-sensitive delamination.
    Mathematics Subject Classification: Primary: 35K85; Secondary: 49S05, 74R20.


    \begin{equation} \\ \end{equation}
  • [1]

    E. C. Aifantis, On the microstructural origin of certain inelastic models, ASME J. Eng. Mater. Technol., 106 (1984), 326-330.doi: 10.1115/1.3225725.


    L. Banks-Sills and D. Ashkenazi, A note on fracture criteria for interface fracture, Intl. J. Fracture, 103 (2000), 177-188.doi: 10.1023/A:1007612613338.


    Z. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Engrg. Mech., 128 (2002), 1119-1149.doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119).


    S. Bennati, M. Colleluori, D. Corigliano and P. Valvo, An enhanced beam-theory model of the asymmetric double cantilever beam (adcb) test for composite laminates, Composites Science and Technology, 69 (2009), 1735-1745.doi: 10.1016/j.compscitech.2009.01.019.


    M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240-253.doi: 10.1063/1.1722351.


    M. A. Biot, "Mechanics of Incremental Deformations," Wiley, New York, 1965.doi: 10.1063/1.3047001.


    E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion, Indiana Univ. Math. J., 56 (2007), 2787-2820.doi: 10.1512/iumj.2007.56.3079.


    E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Meth. Appl. Sci., 31 (2008), 1029-1064.doi: 10.1002/mma.957.


    B. Bourdin, G. A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48 (2000), 797-826.doi: 10.1016/S0022-5096(99)00028-9.


    P. Cornetti and A. Carpinteri, Modelling the FRP-concrete delamination by means of an exponential softening law, Engineering Structures, 33 (2011), 1988-2001.doi: 10.1016/j.engstruct.2011.02.036.


    G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225.doi: 10.1007/s00205-004-0351-4.


    A. Evans, M. Rühle, B. Dalgleish and P. Charalambides, The fracture energy of bimaterial interfaces, Metallurgical Transactions A, 21A (1990), 2419-2429.doi: 10.1007/BF02646986.


    M. Frémond, Dissipation dans l'adhrence des solides, C. R. Acad. Sci., Paris, Sér.II, 300 (1985), 709-714.


    M. Frémond, Contact with adhesion, in "Topics in Nonsmooth Mechanics" (editors, J. Moreau and G. Panagiotopoulos), Birkhäuser, 1988.


    M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.


    M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Internat. J. Solids Structures, 33 (1996), 1083-1103.doi: 10.1016/0020-7683(95)00074-7.


    E. Fried and M. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Rational Mech. Anal., 182 (2006), 513-554.doi: 10.1007/s00205-006-0015-7.


    A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Royal Soc. London Ser. A. Math. Phys. Eng. Sci., 221 (1921), 163-198.doi: 10.1098/rsta.1921.0006.


    W. Han and B. D. Reddy, "Plasticity (Mathematical Theory and Numerical Analysis)," Springer-Verlag, New York, 1999.


    J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, Advances in Applied Mechanics, 29 (1992), 63-191.doi: 10.1016/S0065-2156(08)70164-9.


    M. Jirásek and J. Zeman, Localization study of non-local energetic damage model, arXiv:0804.3440v1, 2008.


    D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Math. Models Meth. Appl. Sci. (M$^3$AS), 18 (2008), 1529-1569.doi: 10.1142/S0218202508003121.


    M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem, Math. Mechanics Solids, 11 (2006), 423-447.


    K. Liechti and Y. Chai, Asymmetric shielding in interfacial fracture under in-plane shear, J. Appl. Mech., 59 (1992), 295-304.doi: 10.1115/1.2899520.


    V. Mantič, Discussion on the reference length and mode mixity for a bimaterial interface, J. Engr. Mater. Technology, 130 (2008), 045501-1-2.


    A. Mielke, Evolution in rate-independent systems (Ch. 6), in "Handbook of Differential Equations, Evolutionary Equations, vol. 2" (editors, C. Dafermos and E. Feireisl), Elsevier B. V., Amsterdam, (2005), 461-559.doi: 10.1016/S1874-5717(06)80009-5.


    A. Mielke, Differential, energetic and metric formulations for rate-independent processes, in "Nonlinear PDEs and Applications" (editors, L. Ambrosio and G. Savaré, Springer, (2010), 87-170.doi: 10.1037/a0020489.


    A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Meth. Appl. Sci., 16 (2006), 177-209.doi: 10.1142/S021820250600111X.


    A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, Math. Model. Numer. Anal. (M2AN), 43 (2009), 399-428.doi: 10.1051/m2an/2009009.


    A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains, J. Elasticity, 109 (2012), 235-73.doi: 10.1007/s10659-012-9379-0.


    A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416.doi: 10.1007/s00526-007-0119-4.


    A. Mielke, T. Roubíček and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics, Computer Methods Appl. Mech. Engr., 199 (2009), 1242-1253.doi: 10.1016/j.cma.2009.09.020.


    A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Proc. of the Workshop on 'Models of Continuum Mechanics in Analysis and Engineering'" (editors, H.-D. Alber, R. Balean and R. Farwig), 117-129. Aachen, 1999. Shaker-Verlag.


    A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl. (NoDEA), 11 (2004), 151-189. (Accepted July 2001).


    A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), 137-177.doi: 10.1007/s002050200194.


    M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion, Math. Models Methods Appl. Sci., 18 (2008), 1895-1925.doi: 10.1142/S0218202508003236.


    C. Panagiotopoulos, "Open BEM Project," 2010. Available from: http://www.openbemproject.org/.


    C. Panagiotopoulos, V. Mantič and T. RoubíčekBEM solution of delamination problems using an interface damage and plasticity model, Computational Mechanics, to appear.


    F. París and J. Cañas, "Boundary Element Method," Oxford University Press, Oxford, 1997.


    P. Podio-Guidugli and G. Vergara Caffarelli, Surface interaction potentials in elasticity, Arch. Rat. Mech. Anal., 109 (1990), 343-381.doi: 10.1007/BF00380381.


    N. Point, Unilateral contact with adherence, Math. Methods Appl. Sci., 10 (1988), 367-381.doi: 10.1002/mma.1670100403.


    N. Point and E. Sacco, A delamination model for laminated composites, Math. Methods Appl. Sci., 33 (1996), 483-509.


    N. Point and E. Sacco, Mathematical properties of a delamination model, Math. Comput. Modelling, 28 (1998), 359-371.doi: 10.1016/S0895-7177(98)00127-7.


    R. Rossi and T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis, Preprints: No.26/2011 at Univ. Brescia, and on arXiv: : 1110.2794.Interfaces and Free Boundaries. to appear.


    T. Roubíček, M. Kružík and J. Zeman, "Delamination and Adhesive Contact Models and Their Mathematical Analysis and Numerical Treatment," in "Math. Methods & Models in Composites," Chap.9. (V.Mantič, ed.) Imperial College Press, ISBN: 978-1-84816-784-1, to appear in 2013.


    T. Roubíček, L. Scardia and C. Zanini, Quasistatic delamination problem, Cont. Mech. Thermodynam, 21 (2009), 223-235.


    J. Simo and T. Hughes, "Computational Inelasticity," Springer, New York, 1998.


    J. Swadener, K. Liechti and A. deLozanne, The intrinsic toughness and adhesion mechanism of a glass/epoxy interface, J. Mech. Phys. Solids, 47 (1999), 223-258.doi: 10.1016/S0022-5096(98)00084-2.


    L. Távara, V. Mantič, E. Graciani, J. Cañas and F. París, Analysis of a crack in a thin adhesive layer between orthotropic materials: An application to composite interlaminar fracture toughness test, CMES - Computer Modeling in Engineering and Sciences, 58 (2010), 247-270.


    L. Távara, V. Mantič, E. Graciani and F. París, BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model, Engineering Analysis with Boundary Elements, 35 (2011), 207-222.


    M. Thomas, "Rate-Independent Damage Processes in Nonlinearly Elastic Materials," PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, 2010.


    M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Disc. Cont. Dynam. Syst. - S, 6 (2013), 235-255.doi: 10.1097/FPC.0b013e32833d1011.


    M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results, Z. angew. Math. Mech. (ZAMM), 90 (2010), 88-112.


    R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth, Boll. Unione Matem. Ital., 2 (2009), 1-36.


    R. Toupin, Elastic materials with couple stresses, Arch. Rat. Mech. Anal., 11 (1962), 385-414.doi: 10.1007/BF00253945.


    V. Tvergaard and J. Hutchinson, The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids, 41 (1993), 1119-1135.doi: 10.1016/0022-5096(93)90057-M.

  • 加载中

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint