\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A quasistatic mixed-mode delamination model

Abstract Related Papers Cited by
  • The quasistatic rate-independent evolution of delamination in the so-called mixed-mode, i.e. distinguishing opening (mode I) from shearing (mode II), devised in [45], is described in detail and rigorously analysed as far as existence of the so-called energetic solutions concerns. The model formulated at small strains uses a delamination parameter of Frémond's type combined with a concept of interface plasticity, and is associative in the sense that the dissipative force driving delamination has a potential which depends in a 1-homogeneous way only on rates of internal parameters. A sample numerical simulation documents that this model can really produce mode-mixity-sensitive delamination.
    Mathematics Subject Classification: Primary: 35K85; Secondary: 49S05, 74R20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. C. Aifantis, On the microstructural origin of certain inelastic models, ASME J. Eng. Mater. Technol., 106 (1984), 326-330.doi: 10.1115/1.3225725.

    [2]

    L. Banks-Sills and D. Ashkenazi, A note on fracture criteria for interface fracture, Intl. J. Fracture, 103 (2000), 177-188.doi: 10.1023/A:1007612613338.

    [3]

    Z. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Engrg. Mech., 128 (2002), 1119-1149.doi: 10.1061/(ASCE)0733-9399(2002)128:11(1119).

    [4]

    S. Bennati, M. Colleluori, D. Corigliano and P. Valvo, An enhanced beam-theory model of the asymmetric double cantilever beam (adcb) test for composite laminates, Composites Science and Technology, 69 (2009), 1735-1745.doi: 10.1016/j.compscitech.2009.01.019.

    [5]

    M. A. Biot, Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27 (1956), 240-253.doi: 10.1063/1.1722351.

    [6]

    M. A. Biot, "Mechanics of Incremental Deformations," Wiley, New York, 1965.doi: 10.1063/1.3047001.

    [7]

    E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion, Indiana Univ. Math. J., 56 (2007), 2787-2820.doi: 10.1512/iumj.2007.56.3079.

    [8]

    E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion, Math. Meth. Appl. Sci., 31 (2008), 1029-1064.doi: 10.1002/mma.957.

    [9]

    B. Bourdin, G. A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48 (2000), 797-826.doi: 10.1016/S0022-5096(99)00028-9.

    [10]

    P. Cornetti and A. Carpinteri, Modelling the FRP-concrete delamination by means of an exponential softening law, Engineering Structures, 33 (2011), 1988-2001.doi: 10.1016/j.engstruct.2011.02.036.

    [11]

    G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal., 176 (2005), 165-225.doi: 10.1007/s00205-004-0351-4.

    [12]

    A. Evans, M. Rühle, B. Dalgleish and P. Charalambides, The fracture energy of bimaterial interfaces, Metallurgical Transactions A, 21A (1990), 2419-2429.doi: 10.1007/BF02646986.

    [13]

    M. Frémond, Dissipation dans l'adhrence des solides, C. R. Acad. Sci., Paris, Sér.II, 300 (1985), 709-714.

    [14]

    M. Frémond, Contact with adhesion, in "Topics in Nonsmooth Mechanics" (editors, J. Moreau and G. Panagiotopoulos), Birkhäuser, 1988.

    [15]

    M. Frémond, "Non-Smooth Thermomechanics," Springer-Verlag, Berlin, 2002.

    [16]

    M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Internat. J. Solids Structures, 33 (1996), 1083-1103.doi: 10.1016/0020-7683(95)00074-7.

    [17]

    E. Fried and M. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Arch. Rational Mech. Anal., 182 (2006), 513-554.doi: 10.1007/s00205-006-0015-7.

    [18]

    A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Royal Soc. London Ser. A. Math. Phys. Eng. Sci., 221 (1921), 163-198.doi: 10.1098/rsta.1921.0006.

    [19]

    W. Han and B. D. Reddy, "Plasticity (Mathematical Theory and Numerical Analysis)," Springer-Verlag, New York, 1999.

    [20]

    J. W. Hutchinson and Z. Suo, Mixed mode cracking in layered materials, Advances in Applied Mechanics, 29 (1992), 63-191.doi: 10.1016/S0065-2156(08)70164-9.

    [21]

    M. Jirásek and J. Zeman, Localization study of non-local energetic damage model, arXiv:0804.3440v1, 2008.

    [22]

    D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Math. Models Meth. Appl. Sci. (M$^3$AS), 18 (2008), 1529-1569.doi: 10.1142/S0218202508003121.

    [23]

    M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem, Math. Mechanics Solids, 11 (2006), 423-447.

    [24]

    K. Liechti and Y. Chai, Asymmetric shielding in interfacial fracture under in-plane shear, J. Appl. Mech., 59 (1992), 295-304.doi: 10.1115/1.2899520.

    [25]

    V. Mantič, Discussion on the reference length and mode mixity for a bimaterial interface, J. Engr. Mater. Technology, 130 (2008), 045501-1-2.

    [26]

    A. Mielke, Evolution in rate-independent systems (Ch. 6), in "Handbook of Differential Equations, Evolutionary Equations, vol. 2" (editors, C. Dafermos and E. Feireisl), Elsevier B. V., Amsterdam, (2005), 461-559.doi: 10.1016/S1874-5717(06)80009-5.

    [27]

    A. Mielke, Differential, energetic and metric formulations for rate-independent processes, in "Nonlinear PDEs and Applications" (editors, L. Ambrosio and G. Savaré, Springer, (2010), 87-170.doi: 10.1037/a0020489.

    [28]

    A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Meth. Appl. Sci., 16 (2006), 177-209.doi: 10.1142/S021820250600111X.

    [29]

    A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, Math. Model. Numer. Anal. (M2AN), 43 (2009), 399-428.doi: 10.1051/m2an/2009009.

    [30]

    A. Mielke, T. Roubíček and M. Thomas, From damage to delamination in nonlinearly elastic materials at small strains, J. Elasticity, 109 (2012), 235-73.doi: 10.1007/s10659-012-9379-0.

    [31]

    A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416.doi: 10.1007/s00526-007-0119-4.

    [32]

    A. Mielke, T. Roubíček and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics, Computer Methods Appl. Mech. Engr., 199 (2009), 1242-1253.doi: 10.1016/j.cma.2009.09.020.

    [33]

    A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in "Proc. of the Workshop on 'Models of Continuum Mechanics in Analysis and Engineering'" (editors, H.-D. Alber, R. Balean and R. Farwig), 117-129. Aachen, 1999. Shaker-Verlag.

    [34]

    A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl. (NoDEA), 11 (2004), 151-189. (Accepted July 2001).

    [35]

    A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), 137-177.doi: 10.1007/s002050200194.

    [36]

    M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion, Math. Models Methods Appl. Sci., 18 (2008), 1895-1925.doi: 10.1142/S0218202508003236.

    [37]

    C. Panagiotopoulos, "Open BEM Project," 2010. Available from: http://www.openbemproject.org/.

    [38]

    C. Panagiotopoulos, V. Mantič and T. RoubíčekBEM solution of delamination problems using an interface damage and plasticity model, Computational Mechanics, to appear.

    [39]

    F. París and J. Cañas, "Boundary Element Method," Oxford University Press, Oxford, 1997.

    [40]

    P. Podio-Guidugli and G. Vergara Caffarelli, Surface interaction potentials in elasticity, Arch. Rat. Mech. Anal., 109 (1990), 343-381.doi: 10.1007/BF00380381.

    [41]

    N. Point, Unilateral contact with adherence, Math. Methods Appl. Sci., 10 (1988), 367-381.doi: 10.1002/mma.1670100403.

    [42]

    N. Point and E. Sacco, A delamination model for laminated composites, Math. Methods Appl. Sci., 33 (1996), 483-509.

    [43]

    N. Point and E. Sacco, Mathematical properties of a delamination model, Math. Comput. Modelling, 28 (1998), 359-371.doi: 10.1016/S0895-7177(98)00127-7.

    [44]

    R. Rossi and T. Roubíček, Adhesive contact delaminating at mixed mode, its thermodynamics and analysis, Preprints: No.26/2011 at Univ. Brescia, and on arXiv: : 1110.2794.Interfaces and Free Boundaries. to appear.

    [45]

    T. Roubíček, M. Kružík and J. Zeman, "Delamination and Adhesive Contact Models and Their Mathematical Analysis and Numerical Treatment," in "Math. Methods & Models in Composites," Chap.9. (V.Mantič, ed.) Imperial College Press, ISBN: 978-1-84816-784-1, to appear in 2013.

    [46]

    T. Roubíček, L. Scardia and C. Zanini, Quasistatic delamination problem, Cont. Mech. Thermodynam, 21 (2009), 223-235.

    [47]

    J. Simo and T. Hughes, "Computational Inelasticity," Springer, New York, 1998.

    [48]

    J. Swadener, K. Liechti and A. deLozanne, The intrinsic toughness and adhesion mechanism of a glass/epoxy interface, J. Mech. Phys. Solids, 47 (1999), 223-258.doi: 10.1016/S0022-5096(98)00084-2.

    [49]

    L. Távara, V. Mantič, E. Graciani, J. Cañas and F. París, Analysis of a crack in a thin adhesive layer between orthotropic materials: An application to composite interlaminar fracture toughness test, CMES - Computer Modeling in Engineering and Sciences, 58 (2010), 247-270.

    [50]

    L. Távara, V. Mantič, E. Graciani and F. París, BEM analysis of crack onset and propagation along fiber-matrix interface under transverse tension using a linear elastic-brittle interface model, Engineering Analysis with Boundary Elements, 35 (2011), 207-222.

    [51]

    M. Thomas, "Rate-Independent Damage Processes in Nonlinearly Elastic Materials," PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, 2010.

    [52]

    M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Disc. Cont. Dynam. Syst. - S, 6 (2013), 235-255.doi: 10.1097/FPC.0b013e32833d1011.

    [53]

    M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain - Existence and regularity results, Z. angew. Math. Mech. (ZAMM), 90 (2010), 88-112.

    [54]

    R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth, Boll. Unione Matem. Ital., 2 (2009), 1-36.

    [55]

    R. Toupin, Elastic materials with couple stresses, Arch. Rat. Mech. Anal., 11 (1962), 385-414.doi: 10.1007/BF00253945.

    [56]

    V. Tvergaard and J. Hutchinson, The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids, 41 (1993), 1119-1135.doi: 10.1016/0022-5096(93)90057-M.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return