June  2013, 6(3): 611-617. doi: 10.3934/dcdss.2013.6.611

A constructive proof of Gibson's stability theorem

1. 

L.M.A.M., CNRS-UMR 7122, Université de Metz, Ile du Saulcy, 57045 Metz Cedex 01, France

2. 

Dipartimento di Matematica, Università di Roma 'Tor Vergata', Via della Ricerca Scienti ca 1, 00133 Roma, Italy

Received  February 2010 Revised  June 2011 Published  December 2012

A useful stability result due to Gibson [SIAM J. Control Optim., 18 (1980), 311--316] ensures that, perturbing the generator of an exponentially stable semigroup by a compact operator, one obtains an exponentially stable semigroup again, provided the perturbed semigroup is strongly stable. In this paper we give a new proof of Gibson's theorem based on constructive reasoning, extend the analysis to Banach spaces, and relax the above compactness assumption. Moreover, we discuss some applications of such an abstract result to equations and systems of evolution.
Citation: Fatiha Alabau-Boussouira, Piermarco Cannarsa. A constructive proof of Gibson's stability theorem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 611-617. doi: 10.3934/dcdss.2013.6.611
References:
[1]

F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I, 328 (1999), 1015-1020. doi: 10.1016/S0764-4442(99)80316-4.

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., 41 (2002), 511-541. doi: 10.1137/S0363012901385368.

[3]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled systems of evolution equations, J. Evol. Equ., 2 (2002), 127-150. doi: 10.1007/s00028-002-8083-0.

[4]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equation," Springer-Verlag, New York, 2000.

[5]

J. S. Gibson, A note on stabilization of infinite dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim., 18 (1980), 311-316. doi: 10.1137/0318022.

[6]

A. Haraux, "Semi-groupes Linéaires et Équations D'évolutions Linéaires Périodiques," Publications du Laboratoire d'Analyse Numérique 78011, Université Pierre et Marie Curie, Paris, 1978.

[7]

L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin, 1963.

[8]

V. Komornik, "Exact Controllability and Stabilization. The Multiplier Method," in "Collection RMA,'' 36, Masson-John Wiley, Paris-Chicester, 1994.

show all references

References:
[1]

F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés, C. R. Acad. Sci. Paris Sér. I, 328 (1999), 1015-1020. doi: 10.1016/S0764-4442(99)80316-4.

[2]

F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems, SIAM J. Control Optim., 41 (2002), 511-541. doi: 10.1137/S0363012901385368.

[3]

F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled systems of evolution equations, J. Evol. Equ., 2 (2002), 127-150. doi: 10.1007/s00028-002-8083-0.

[4]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equation," Springer-Verlag, New York, 2000.

[5]

J. S. Gibson, A note on stabilization of infinite dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim., 18 (1980), 311-316. doi: 10.1137/0318022.

[6]

A. Haraux, "Semi-groupes Linéaires et Équations D'évolutions Linéaires Périodiques," Publications du Laboratoire d'Analyse Numérique 78011, Université Pierre et Marie Curie, Paris, 1978.

[7]

L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin, 1963.

[8]

V. Komornik, "Exact Controllability and Stabilization. The Multiplier Method," in "Collection RMA,'' 36, Masson-John Wiley, Paris-Chicester, 1994.

[1]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[2]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[3]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[6]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[9]

Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[10]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[11]

Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74.

[12]

Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022050

[13]

Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024

[14]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[15]

Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430

[16]

Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199

[17]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[18]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[19]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[20]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]