June  2013, 6(3): 619-635. doi: 10.3934/dcdss.2013.6.619

Product structures and fractional integration along curves in the space

1. 

DTG, Università degli Studi di Padova, Stradella San Nicola 3, 36100 Vicenza, Italy

2. 

DICEA, Università degli Studi di Padova, Via Marzolo 9, 35131 Padova, Italy, Italy

Received  March 2010 Revised  February 2012 Published  December 2012

In this paper we establish $L^p$ boundedness ($1 < p < \infty$) for a double analytic family of fractional integrals $S^{\gamma}_{z}$, $\gamma,z ∈\mathbb{C}$, when $\Re e z=0$. Our proof is based on product-type kernels arguments. More precisely, we prove that the convolution kernel of $S^{\gamma}_{z}$ is a product kernel on $\mathbb{R}^3$, adapted to the polynomial curve $x_1\mapsto (x_1^m,x_1^n)$ (here $m,n∈\mathbb{N},m ≥ 1, n > m $).
Citation: Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619
References:
[1]

V. Casarino, P. Ciatti and S. Secco, Product kernels adapted to curves in the space,, Revista Matematica Iberoamericana, 27 (2011), 1023.  doi: 10.4171/RMI/662.  Google Scholar

[2]

V. Casarino and S. Secco, $L^p-L^q$ boundedness of analytic families of fractional integrals,, Studia Mathematica, 184 (2008), 153.  doi: 10.4064/sm184-2-5.  Google Scholar

[3]

R. Fefferman and E. M. Stein, Singular integrals on product spaces,, Adv. in Math., 45 (1982), 117.  doi: 10.1016/S0001-8708(82)80001-7.  Google Scholar

[4]

G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Mathematical Notes, (1982).   Google Scholar

[5]

L. Grafakos, Strong type endpoint bounds for analytic families of fractional integrals,, Proc. Amer. Math. Soc., 117 (1993), 653.  doi: 10.2307/2159123.  Google Scholar

[6]

M. Kashiwara, B-functions and holonomic systems,, Invent. Math., 38 (): 33.   Google Scholar

[7]

D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I.,, Invent. Math., 119 (1995), 119.  doi: 10.1007/BF01245180.  Google Scholar

[8]

A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds,, J. Funct. Anal., 181 (2001), 29.  doi: 10.1006/jfan.2000.3714.  Google Scholar

[9]

A. Nagel and E. M. Stein, On the product theory of singular integrals,, Rev. Mat. Iberoamericana, 20 (2004), 531.  doi: 10.4171/RMI/400.  Google Scholar

[10]

A. Nagel and E. M. Stein, The $\overline{\partial}_b$-complex on decoupled boundaries in $\mathbbC^n$,, Ann. of Math. (2), 164 (2006), 649.  doi: 10.4007/annals.2006.164.649.  Google Scholar

[11]

E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature,, Bull. Amer. Math. Soc., 84 (1978), 1239.  doi: 10.1090/S0002-9904-1978-14554-6.  Google Scholar

show all references

References:
[1]

V. Casarino, P. Ciatti and S. Secco, Product kernels adapted to curves in the space,, Revista Matematica Iberoamericana, 27 (2011), 1023.  doi: 10.4171/RMI/662.  Google Scholar

[2]

V. Casarino and S. Secco, $L^p-L^q$ boundedness of analytic families of fractional integrals,, Studia Mathematica, 184 (2008), 153.  doi: 10.4064/sm184-2-5.  Google Scholar

[3]

R. Fefferman and E. M. Stein, Singular integrals on product spaces,, Adv. in Math., 45 (1982), 117.  doi: 10.1016/S0001-8708(82)80001-7.  Google Scholar

[4]

G. B. Folland and E. M. Stein, "Hardy Spaces on Homogeneous Groups,", Mathematical Notes, (1982).   Google Scholar

[5]

L. Grafakos, Strong type endpoint bounds for analytic families of fractional integrals,, Proc. Amer. Math. Soc., 117 (1993), 653.  doi: 10.2307/2159123.  Google Scholar

[6]

M. Kashiwara, B-functions and holonomic systems,, Invent. Math., 38 (): 33.   Google Scholar

[7]

D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups I.,, Invent. Math., 119 (1995), 119.  doi: 10.1007/BF01245180.  Google Scholar

[8]

A. Nagel, F. Ricci and E. M. Stein, Singular integrals with flag kernels and analysis on quadratic CR manifolds,, J. Funct. Anal., 181 (2001), 29.  doi: 10.1006/jfan.2000.3714.  Google Scholar

[9]

A. Nagel and E. M. Stein, On the product theory of singular integrals,, Rev. Mat. Iberoamericana, 20 (2004), 531.  doi: 10.4171/RMI/400.  Google Scholar

[10]

A. Nagel and E. M. Stein, The $\overline{\partial}_b$-complex on decoupled boundaries in $\mathbbC^n$,, Ann. of Math. (2), 164 (2006), 649.  doi: 10.4007/annals.2006.164.649.  Google Scholar

[11]

E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature,, Bull. Amer. Math. Soc., 84 (1978), 1239.  doi: 10.1090/S0002-9904-1978-14554-6.  Google Scholar

[1]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[5]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[10]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[11]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[12]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[15]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[16]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[17]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]