June  2013, 6(3): 637-647. doi: 10.3934/dcdss.2013.6.637

Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator

1. 

Scuola Normale Superiore di Pisa, Palazzo della Carovana, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

Received  April 2010 Revised  October 2010 Published  December 2012

We prove some Shauder estimates for an elliptic equation in Hilbert spaces.
Citation: Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637
References:
[1]

J. M. Bismut, "Large Deviations and the Malliavin Calculus,", Birkhäuser, (1984).   Google Scholar

[2]

P. Cannarsa and G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces,, in, 350 (1996), 100.   Google Scholar

[3]

S. Cerrai, Weakly continuous semigroups in the space of functions with polynomial growth,, Dyn. Syst. Appl., 4 (1995), 351.   Google Scholar

[4]

G. Da Prato, "Kolmogorov Equations for Stochastic PDEs,", Birkhäuser, (2004).  doi: 10.1007/978-3-0348-7909-5.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert spaces,", London Mathematical Society Lecture Notes, 293 (2002).  doi: 10.1017/CBO9780511543210.  Google Scholar

[6]

K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in, II (1992), 33.  doi: 10.1007/978-1-4612-0389-6.  Google Scholar

[7]

A. Lunardi, An interpolation method to characterize domains of generators of semigroups,, Semigroup Forum, 53 (1996), 321.  doi: 10.1007/BF02574147.  Google Scholar

[8]

E. Priola, On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions,, Studia Math., 136 (1995), 271.   Google Scholar

[9]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978).   Google Scholar

show all references

References:
[1]

J. M. Bismut, "Large Deviations and the Malliavin Calculus,", Birkhäuser, (1984).   Google Scholar

[2]

P. Cannarsa and G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces,, in, 350 (1996), 100.   Google Scholar

[3]

S. Cerrai, Weakly continuous semigroups in the space of functions with polynomial growth,, Dyn. Syst. Appl., 4 (1995), 351.   Google Scholar

[4]

G. Da Prato, "Kolmogorov Equations for Stochastic PDEs,", Birkhäuser, (2004).  doi: 10.1007/978-3-0348-7909-5.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert spaces,", London Mathematical Society Lecture Notes, 293 (2002).  doi: 10.1017/CBO9780511543210.  Google Scholar

[6]

K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in, II (1992), 33.  doi: 10.1007/978-1-4612-0389-6.  Google Scholar

[7]

A. Lunardi, An interpolation method to characterize domains of generators of semigroups,, Semigroup Forum, 53 (1996), 321.  doi: 10.1007/BF02574147.  Google Scholar

[8]

E. Priola, On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions,, Studia Math., 136 (1995), 271.   Google Scholar

[9]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978).   Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[12]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[13]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[18]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[19]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[20]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]