June  2013, 6(3): 637-647. doi: 10.3934/dcdss.2013.6.637

Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator

1. 

Scuola Normale Superiore di Pisa, Palazzo della Carovana, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

Received  April 2010 Revised  October 2010 Published  December 2012

We prove some Shauder estimates for an elliptic equation in Hilbert spaces.
Citation: Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637
References:
[1]

J. M. Bismut, "Large Deviations and the Malliavin Calculus,", Birkhäuser, (1984).   Google Scholar

[2]

P. Cannarsa and G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces,, in, 350 (1996), 100.   Google Scholar

[3]

S. Cerrai, Weakly continuous semigroups in the space of functions with polynomial growth,, Dyn. Syst. Appl., 4 (1995), 351.   Google Scholar

[4]

G. Da Prato, "Kolmogorov Equations for Stochastic PDEs,", Birkhäuser, (2004).  doi: 10.1007/978-3-0348-7909-5.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert spaces,", London Mathematical Society Lecture Notes, 293 (2002).  doi: 10.1017/CBO9780511543210.  Google Scholar

[6]

K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in, II (1992), 33.  doi: 10.1007/978-1-4612-0389-6.  Google Scholar

[7]

A. Lunardi, An interpolation method to characterize domains of generators of semigroups,, Semigroup Forum, 53 (1996), 321.  doi: 10.1007/BF02574147.  Google Scholar

[8]

E. Priola, On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions,, Studia Math., 136 (1995), 271.   Google Scholar

[9]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978).   Google Scholar

show all references

References:
[1]

J. M. Bismut, "Large Deviations and the Malliavin Calculus,", Birkhäuser, (1984).   Google Scholar

[2]

P. Cannarsa and G. Da Prato, Schauder estimates for Kolmogorov equations in Hilbert spaces,, in, 350 (1996), 100.   Google Scholar

[3]

S. Cerrai, Weakly continuous semigroups in the space of functions with polynomial growth,, Dyn. Syst. Appl., 4 (1995), 351.   Google Scholar

[4]

G. Da Prato, "Kolmogorov Equations for Stochastic PDEs,", Birkhäuser, (2004).  doi: 10.1007/978-3-0348-7909-5.  Google Scholar

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert spaces,", London Mathematical Society Lecture Notes, 293 (2002).  doi: 10.1017/CBO9780511543210.  Google Scholar

[6]

K. D. Elworthy, Stochastic flows on Riemannian manifolds,, in, II (1992), 33.  doi: 10.1007/978-1-4612-0389-6.  Google Scholar

[7]

A. Lunardi, An interpolation method to characterize domains of generators of semigroups,, Semigroup Forum, 53 (1996), 321.  doi: 10.1007/BF02574147.  Google Scholar

[8]

E. Priola, On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions,, Studia Math., 136 (1995), 271.   Google Scholar

[9]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland, (1978).   Google Scholar

[1]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[2]

Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525

[3]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[4]

Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451

[5]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[6]

Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142

[7]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[8]

Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651

[9]

Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic & Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013

[10]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[11]

Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010

[12]

Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285

[13]

Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020112

[14]

Andrzej Szulkin, Shoyeb Waliullah. Infinitely many solutions for some singular elliptic problems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 321-333. doi: 10.3934/dcds.2013.33.321

[15]

Dušan D. Repovš. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 401-411. doi: 10.3934/dcdss.2019026

[16]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[17]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[18]

Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure & Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003

[19]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[20]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]