\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Arithmetic progressions -- an operator theoretic view

Abstract / Introduction Related Papers Cited by
  • Motivated by the recent Green--Tao theorem on arithmetic progressions in the primes, we discuss some of the basic operator theoretic techniques used in its proof. In particular, we obtain a complete proof of Szemerédi's theorem for arithmetic progressions of length $3$ (Roth's theorem) and the Furstenberg--Sárközy theorem.
    Mathematics Subject Classification: 47A35, 37A45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753.

    [2]

    V. Bergelson, A. Leibman and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem, Adv. Math., 219 (2008), 369-388.

    [3]

    M. Einsiedler and T. Ward, "Ergodic Theory: With a View Towards Number Theory," Springer-Verlag London, Ltd., London, 2011.doi: 10.1007/978-0-85729-021-2.

    [4]

    T. Eisner, "Stability of Operators and Operator Semigroups," Birkhäuser Verlag, Basel, 2010.

    [5]

    T. Eisner, B. Farkas, M. Haase and R. Nagel, "Operator Theoretic Aspects of Ergodic Theory," Graduate Texts in Mathematics, Springer, 2013.

    [6]

    T. Eisner, B. Farkas, R. Nagel and A. Serény, Weakly and almost weakly stable $C_0$-semigroups, Int. J. Dyn. Syst. Differ. Equ., 1 (2007), 44-57.doi: 10.1504/IJDSDE.2007.013744.

    [7]

    H. Furstenberg, "Recurrence in Ergodic Theory and Combinatorial Number Theory," Princeton University Press, Princeton, New Jersey, 1981.

    [8]

    H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math., 31 (1977), 204-256.

    [9]

    H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc., 7 (1982), 527-552.doi: 10.1090/S0273-0979-1982-15052-2.

    [10]

    H. Furstenberg and B. Weiss, A mean ergodic theorem for $\frac{1}N sum_{n=1}^N f(T^nx) g(T^{n^2}x)$, Convergence in Ergodic Theory and Probability, eds: Bergelson, March, Rosenblatt, Walter de Gruyter & Co, Berlin, New York, (1996), 193-227.

    [11]

    B. Green, "Lectures on Ergodic Theory, Part III," http://www.dpmms.cam.ac.uk/ bjg23/ergodic-theory.html.

    [12]

    B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals Math., 167 (2008), 481-547.doi: 10.4007/annals.2008.167.481.

    [13]

    B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Annals Math., 161 (2005), 397-488.doi: 10.4007/annals.2005.161.397.

    [14]

    B. Kra, The Green-Tao Theorem on arithmetic progressions in the primes: An ergodic point of view, Bull. Amer. Math. Soc., 43 (2006), 3-23.doi: 10.1090/S0273-0979-05-01086-4.

    [15]

    B. Kra, Ergodic methods in additive combinatorics, Additive combinatorics, 103-143, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, (2007).

    [16]

    K. Petersen, "Ergodic Theory," Cambridge University Press, 1983.

    [17]

    H. H. Schaefer, "Banach Lattices and Positive Operators," Springer-Verlag, 1974.

    [18]

    T. Tao, The dichotomy between structure and randomness, arithmetic progressions, and the primes, International Congress of Mathematicians, I 581-608, Eur. Math. Soc., Zürich, (2007).doi: 10.4171/022-1/22.

    [19]

    T. Tao, "Topics in Ergodic Theory," 2008, http://terrytao.wordpress.com/category/254a-ergodic-theory/.

    [20]

    T. Tao, "The Van der Corput Trick, and Equidistribution on Nilmanifolds," in Topics in Ergodic Theory, 2008, http://terrytao.wordpress.com/2008/06/14/the-van-der-corputs-trick-and-equidistribution-on-nilmanifolds.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(142) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return