\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Semiclassical limit of Husimi function

Abstract / Introduction Related Papers Cited by
  • We will show that Liouville and quantum Liouville operators $L$ and $L_\hbar$ generate two $C_0$-groups $e^{tL}$ and $e^{tL_h}$ of isometries in $L^2(\mathbb{R}^{2n})$ and $e^{tL_h}$ converges ultraweakly to $e^{tL}$. As a consequence we show that the Gaussian mollifier of the Wigner function, called Husimi function, converges in $L^1(\mathbb{R}^{2n})$ to the solution of the Liouville equation.
    Mathematics Subject Classification: 81Q20, 47C05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels, Ann. Sci. Éc. Norm. Supér. (4), 3 (1970), 185-233.

    [2]

    E. B. Davies, "Quantum Theory of Open Systems," Academic Press, London, New-York, 1976.

    [3]

    J. Dixmier, "Les Algèbres d'Opérateurs dans l'Espace Hilbertien," Gauthier-Villars, Paris, 1969.

    [4]

    H. Emamirad and Ph. Rogeon, An existence family for the Husimi operator, Transp. Theo. Stat. Phys., 30 (2001), 673-685.doi: 10.1081/TT-100107422.

    [5]

    H. Emamirad and Ph. Rogeon, Scattering theory for Wigner equation, Math. Meth. Appl. Sc., 28 (2005), 947-960.doi: 10.1002/mma.601.

    [6]

    K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan (III), 22 (1940), 464-517.

    [7]

    P.-L. Lions, Transformèes de Wigner et èquations de Liouville, RMA Res. Notes Appl. Math., 28 (1994), 539-553.

    [8]

    P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618.doi: 10.4171/RMI/143.

    [9]

    E.-M. Ouhabaz, "Analysis of Heat Equations on Domains," Princeton Univ. Press, Princeton, Oxford, 2005.

    [10]

    P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Meth. Appl. Sci., 11 (1989), 459-469.doi: 10.1002/mma.1670110404.

    [11]

    P. A. Markowich and C. A. Ringhofer, An analysis of the quantum Liouville equation, Z. Angew. Math. Mech., 69 (1989), 121-127.doi: 10.1002/zamm.19890690303.

    [12]

    M. Reed and B. Simon, "Methods of Modern Mathematical Physics (vol. I : Functional Analysis)," Academic Press, London, New York, San Francisco, 1975.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return