June  2013, 6(3): 677-685. doi: 10.3934/dcdss.2013.6.677

Simulation of lava flows with power-law rheology

1. 

Istituto Nazionale di Geofisica e Vulcanologia, Sez. di Catania, Piazza Roma 2, I-95152 Catania, Italy

2. 

Dipartimento di Geologia e Geofisica, Università di Bari, Via Edoardo Orabona 4, I-70125 Bari, Italy

3. 

Dipartimento di Fisica, Università di Bologna, Viale Carlo Berti Pichat 8, I-40127 Bologna, Italy

Received  March 2010 Revised  November 2010 Published  December 2012

In this work we studied the effect of a power-law rheology on a gravity driven lava flow. Assuming a viscous fluid with constant temperature and constant density and assuming a steady flow in an inclined rectangular channel, the equation of the motion is solved by the finite volume method and a classical iterative solutor. Comparisons with observed channeled lava flows indicate that the assumption of the power-law rheology causes relevant differences in average velocity and volume flow rate with respect to the Newtonian rheology.
Citation: Marilena Filippucci, Andrea Tallarico, Michele Dragoni. Simulation of lava flows with power-law rheology. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 677-685. doi: 10.3934/dcdss.2013.6.677
References:
[1]

N. Bagdassarov and H. Pinkerton, Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials, J. Volcanol. Geotherm. Res. 132 (2004), 132 (2004), 115.

[2]

R. Champallier, M. Bystricky and L. Arbaret, Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. of crystals, Earth Planet. Sc. Lett. 267 (2008), 267 (2008), 571.

[3]

M. Capobianchi, Pressure drop predictions for laminar flows of extended modified power law fluids in rectangular ducts, Int. J. Heat Mass Transfer, 51 (2008), 1393.

[4]

M. Dragoni, M. Bonafede and E. Boschi, Downslope flow model of a Bingham liquid: Implications for lava flows, J. Volcanol. Geotherm. Res. 30 (1986), 30 (1986), 305.

[5]

M. Dragoni and A. Tallarico, The effect of crystallization on the rheology and dynamics of lava flows, J. Volcanol. Geotherm. Res. 59 (1994), 59 (1994), 241.

[6]

M. Dragoni, A. Piombo and A. Tallarico, A model for the formation of lava tubes by roofing over a channel, J. Geophys. Res. 100 (1995), 100 (1995), 8435.

[7]

M. Dragoni, I. Borsari and A. Tallarico, A model for the shape of lava flow fronts, J. Geophys. Res. 110 (2005), 110 (2005).

[8]

C. Ferlito and J. Siewert, Lava Channel Formation during the 2001 Eruption on Mount Etna: Evidence for Mechanical Erosion, Phys. Rev. Lett. 96 (2006), 96 (2006).

[9]

J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics," Springer-Verlag, Berlin,, 2002., (). doi: 10.1007/978-3-642-97651-3.

[10]

M. Filippucci, A. Tallarico and M. Dragoni, A three dimensional dynamical model for channeled lava flow with non-linear rheology, J. Geophys. Res. 115, 115 ().

[11]

R. C. Gupta, On developing laminar non-Newtonian flow in pipes and channels, Nonlin. Anal.: Real World Appl. 2 (2001), 2 (2001), 171. doi: 10.1016/S0362-546X(00)00109-7.

[12]

A. J. L. Harris and S. K. Rowland, FLOWGO: A kinematic thermo-rheological model for lava flowing in a channel, Bull. Volcanol. 63 (2001), 63 (2001), 20.

[13]

A. J. L. Harris, J. Bailey, S. Calvari and J. Dehn, Heat loss measured at a lava channel and its implications for down-channel cooling and rheology, in, (2005), 125.

[14]

K. Hon, J. Kauahikaua, R. Denlinger and K. McKay, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active flows an Kilauea Volcano,, Hawaii Geol. Soc. Am. Bull. 106 (1994), 106 (1994), 351.

[15]

Y. Lavallée, K.U. Hess, B. Cordonnier and D. B. Dingwell, Non-Newtonian rheological law for highly crystalline dome lavas, Geology 9 (2007), 9 (2007), 843.

[16]

S. V. Patankar, "Numerical Heat Transfer and Fluid Flow,", Series in Computational Methods in Mechanics and Thermal Sciences, (1980).

[17]

H. Pinkerton and R. S. J. Sparks, Field measurements of the rheology of lava, Nature 276 (1978), 276 (1978), 383.

[18]

H. Pinkerton and G. Norton, Rheological properties of basaltic lavas at sub-liquidus temperatures: Laboratory and field measurements on lavas from Mount Etna, J. Volcanol. Geotherm. Res. 68 (1995), 68 (1995), 307.

[19]

H. Pinkerton and R. Stevenson, Methods of determining the rheological properties of magmas at sub-solidus temperatures, J. Volcanol. Geotherm. Res. 53 (1992), 53 (1992), 47.

[20]

H. R. Shaw, T. L. Wright, D. L. Peck and R. Okamura, The viscosity of basaltic magma: An analysis of field measurements in Makaopuhi lava lake, Hawaii. Am. J. Sci. 266 (1968), 266 (1968), 255.

[21]

J. V. Smith, Textural evidence for dilatant (shear thickening) rheology of magma at high crystal concentrations, J. Volcanol. Geotherm. Res. 99 (2000), 99 (2000), 1.

[22]

I. Sonder, B. Zimanowski and R. Büttner, Non-Newtonian viscosity of basaltic magma, Geoph. Res. Lett. 33 (2006), 33 (2006).

[23]

J. Spera, A. Borgia, J. Strimple and M. Feigenson, Rheology of melts and magmatic suspensions 1. design and calibration of concentric cylinder viscosimeter with application to rhyolitic magma, J. Geophys. Res. 93 (1988), 93 (1988), 273.

[24]

D. J. Stein and F. J. Spera, Rheology and microstructure of magmatic emulsions: Theory and experiments, J. Volcanol. Geotherm. Res. 49 (1992), 49 (1992), 157.

[25]

S. Syrjälä, Finite-element analysis of fully developed laminar flow of power-law non-Newtonian fluid in a rectangular duct, Int. Commun. Heat Mass Transfer 22 (1995), 22 (1995), 549.

[26]

A. Tallarico and M. Dragoni, Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows, Bull. Volcanol. 61 (1999), 61 (1999), 40.

[27]

A. Tallarico and M. Dragoni, A three-dimensional Bingham model for channeled lava flows, J. Geophys. Res. 105 (2000), 105 (2000), 969.

[28]

A. Tallarico, M. Dragoni and G. Zito, Evaluation of lava effusion rate and viscosity from other flow parameters, J. Geophys. Res. 111 (2006)., 111 (2006).

[29]

H. C. Weed, F. J. Ryerson and A. J. Piwinskii, Rheological properties of Molten Kilauea Iki Basalt containing suspended crystals, in, (1986), 223.

show all references

References:
[1]

N. Bagdassarov and H. Pinkerton, Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials, J. Volcanol. Geotherm. Res. 132 (2004), 132 (2004), 115.

[2]

R. Champallier, M. Bystricky and L. Arbaret, Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. of crystals, Earth Planet. Sc. Lett. 267 (2008), 267 (2008), 571.

[3]

M. Capobianchi, Pressure drop predictions for laminar flows of extended modified power law fluids in rectangular ducts, Int. J. Heat Mass Transfer, 51 (2008), 1393.

[4]

M. Dragoni, M. Bonafede and E. Boschi, Downslope flow model of a Bingham liquid: Implications for lava flows, J. Volcanol. Geotherm. Res. 30 (1986), 30 (1986), 305.

[5]

M. Dragoni and A. Tallarico, The effect of crystallization on the rheology and dynamics of lava flows, J. Volcanol. Geotherm. Res. 59 (1994), 59 (1994), 241.

[6]

M. Dragoni, A. Piombo and A. Tallarico, A model for the formation of lava tubes by roofing over a channel, J. Geophys. Res. 100 (1995), 100 (1995), 8435.

[7]

M. Dragoni, I. Borsari and A. Tallarico, A model for the shape of lava flow fronts, J. Geophys. Res. 110 (2005), 110 (2005).

[8]

C. Ferlito and J. Siewert, Lava Channel Formation during the 2001 Eruption on Mount Etna: Evidence for Mechanical Erosion, Phys. Rev. Lett. 96 (2006), 96 (2006).

[9]

J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics," Springer-Verlag, Berlin,, 2002., (). doi: 10.1007/978-3-642-97651-3.

[10]

M. Filippucci, A. Tallarico and M. Dragoni, A three dimensional dynamical model for channeled lava flow with non-linear rheology, J. Geophys. Res. 115, 115 ().

[11]

R. C. Gupta, On developing laminar non-Newtonian flow in pipes and channels, Nonlin. Anal.: Real World Appl. 2 (2001), 2 (2001), 171. doi: 10.1016/S0362-546X(00)00109-7.

[12]

A. J. L. Harris and S. K. Rowland, FLOWGO: A kinematic thermo-rheological model for lava flowing in a channel, Bull. Volcanol. 63 (2001), 63 (2001), 20.

[13]

A. J. L. Harris, J. Bailey, S. Calvari and J. Dehn, Heat loss measured at a lava channel and its implications for down-channel cooling and rheology, in, (2005), 125.

[14]

K. Hon, J. Kauahikaua, R. Denlinger and K. McKay, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active flows an Kilauea Volcano,, Hawaii Geol. Soc. Am. Bull. 106 (1994), 106 (1994), 351.

[15]

Y. Lavallée, K.U. Hess, B. Cordonnier and D. B. Dingwell, Non-Newtonian rheological law for highly crystalline dome lavas, Geology 9 (2007), 9 (2007), 843.

[16]

S. V. Patankar, "Numerical Heat Transfer and Fluid Flow,", Series in Computational Methods in Mechanics and Thermal Sciences, (1980).

[17]

H. Pinkerton and R. S. J. Sparks, Field measurements of the rheology of lava, Nature 276 (1978), 276 (1978), 383.

[18]

H. Pinkerton and G. Norton, Rheological properties of basaltic lavas at sub-liquidus temperatures: Laboratory and field measurements on lavas from Mount Etna, J. Volcanol. Geotherm. Res. 68 (1995), 68 (1995), 307.

[19]

H. Pinkerton and R. Stevenson, Methods of determining the rheological properties of magmas at sub-solidus temperatures, J. Volcanol. Geotherm. Res. 53 (1992), 53 (1992), 47.

[20]

H. R. Shaw, T. L. Wright, D. L. Peck and R. Okamura, The viscosity of basaltic magma: An analysis of field measurements in Makaopuhi lava lake, Hawaii. Am. J. Sci. 266 (1968), 266 (1968), 255.

[21]

J. V. Smith, Textural evidence for dilatant (shear thickening) rheology of magma at high crystal concentrations, J. Volcanol. Geotherm. Res. 99 (2000), 99 (2000), 1.

[22]

I. Sonder, B. Zimanowski and R. Büttner, Non-Newtonian viscosity of basaltic magma, Geoph. Res. Lett. 33 (2006), 33 (2006).

[23]

J. Spera, A. Borgia, J. Strimple and M. Feigenson, Rheology of melts and magmatic suspensions 1. design and calibration of concentric cylinder viscosimeter with application to rhyolitic magma, J. Geophys. Res. 93 (1988), 93 (1988), 273.

[24]

D. J. Stein and F. J. Spera, Rheology and microstructure of magmatic emulsions: Theory and experiments, J. Volcanol. Geotherm. Res. 49 (1992), 49 (1992), 157.

[25]

S. Syrjälä, Finite-element analysis of fully developed laminar flow of power-law non-Newtonian fluid in a rectangular duct, Int. Commun. Heat Mass Transfer 22 (1995), 22 (1995), 549.

[26]

A. Tallarico and M. Dragoni, Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows, Bull. Volcanol. 61 (1999), 61 (1999), 40.

[27]

A. Tallarico and M. Dragoni, A three-dimensional Bingham model for channeled lava flows, J. Geophys. Res. 105 (2000), 105 (2000), 969.

[28]

A. Tallarico, M. Dragoni and G. Zito, Evaluation of lava effusion rate and viscosity from other flow parameters, J. Geophys. Res. 111 (2006)., 111 (2006).

[29]

H. C. Weed, F. J. Ryerson and A. J. Piwinskii, Rheological properties of Molten Kilauea Iki Basalt containing suspended crystals, in, (1986), 223.

[1]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[2]

José A. Carrillo, Yanghong Huang. Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinetic & Related Models, 2017, 10 (1) : 171-192. doi: 10.3934/krm.2017007

[3]

Frank Jochmann. Power-law approximation of Bean's critical-state model with displacement current. Conference Publications, 2011, 2011 (Special) : 747-753. doi: 10.3934/proc.2011.2011.747

[4]

Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial & Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553

[5]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[6]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[7]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[8]

Alberto Bressan, Graziano Guerra. Shift-differentiabilitiy of the flow generated by a conservation law. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 35-58. doi: 10.3934/dcds.1997.3.35

[9]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[10]

Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$-brownian motion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1459-1502. doi: 10.3934/dcdsb.2018159

[11]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[12]

Anibal T. Azevedo, Aurelio R. L. Oliveira, Marcos J. Rider, Secundino Soares. How to efficiently incorporate facts devices in optimal active power flow model. Journal of Industrial & Management Optimization, 2010, 6 (2) : 315-331. doi: 10.3934/jimo.2010.6.315

[13]

Evgeny I. Veremey, Vladimir V. Eremeev. SISO H-Optimal synthesis with initially specified structure of control law. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 121-138. doi: 10.3934/naco.2017009

[14]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[15]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[16]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[17]

Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations & Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i

[18]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[19]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[20]

Kit Yan Chan, Changjun Yu, Kok Lay Teo, Sven Nordholm. Essential issues on solving optimal power flow problems using soft-computing. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 341-351. doi: 10.3934/naco.2014.4.341

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

[Back to Top]