
Previous Article
Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates
 DCDSS Home
 This Issue

Next Article
Semiclassical limit of Husimi function
Simulation of lava flows with powerlaw rheology
1.  Istituto Nazionale di Geofisica e Vulcanologia, Sez. di Catania, Piazza Roma 2, I95152 Catania, Italy 
2.  Dipartimento di Geologia e Geofisica, Università di Bari, Via Edoardo Orabona 4, I70125 Bari, Italy 
3.  Dipartimento di Fisica, Università di Bologna, Viale Carlo Berti Pichat 8, I40127 Bologna, Italy 
References:
[1] 
N. Bagdassarov and H. Pinkerton, Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials J. Volcanol. Geotherm. Res. 132 (2004), 115136. 
[2] 
R. Champallier, M. Bystricky and L. Arbaret, Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. of crystals Earth Planet. Sc. Lett. 267 (2008), 571583. 
[3] 
M. Capobianchi, Pressure drop predictions for laminar flows of extended modified power law fluids in rectangular ducts Int. J. Heat Mass Transfer, 51 (2008), 13931401. 
[4] 
M. Dragoni, M. Bonafede and E. Boschi, Downslope flow model of a Bingham liquid: Implications for lava flows J. Volcanol. Geotherm. Res. 30 (1986), 305325. 
[5] 
M. Dragoni and A. Tallarico, The effect of crystallization on the rheology and dynamics of lava flows J. Volcanol. Geotherm. Res. 59 (1994), 241252. 
[6] 
M. Dragoni, A. Piombo and A. Tallarico, A model for the formation of lava tubes by roofing over a channel J. Geophys. Res. 100 (1995), 84358447. 
[7] 
M. Dragoni, I. Borsari and A. Tallarico, A model for the shape of lava flow fronts J. Geophys. Res. 110 (2005), B09203. 
[8] 
C. Ferlito and J. Siewert, Lava Channel Formation during the 2001 Eruption on Mount Etna: Evidence for Mechanical Erosion Phys. Rev. Lett. 96 (2006), 028501. 
[9] 
J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics," SpringerVerlag, Berlin,, 2002., (). doi: 10.1007/9783642976513. 
[10] 
M. Filippucci, A. Tallarico and M. Dragoni, A three dimensional dynamical model for channeled lava flow with nonlinear rheology, J. Geophys. Res. 115, 115 (). 
[11] 
R. C. Gupta, On developing laminar nonNewtonian flow in pipes and channels Nonlin. Anal.: Real World Appl. 2 (2001), 171193. doi: 10.1016/S0362546X(00)001097. 
[12] 
A. J. L. Harris and S. K. Rowland, FLOWGO: A kinematic thermorheological model for lava flowing in a channel Bull. Volcanol. 63 (2001), 2044. 
[13] 
A. J. L. Harris, J. Bailey, S. Calvari and J. Dehn, Heat loss measured at a lava channel and its implications for downchannel cooling and rheology in "Kinematics and Dynamics of Lava Flows" (eds. M. Manga and G. Ventura) Geol. Soc. of Am. Special Paper, 2005, 396, 125146. 
[14] 
K. Hon, J. Kauahikaua, R. Denlinger and K. McKay, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active flows an Kilauea Volcano, Hawaii Geol. Soc. Am. Bull. 106 (1994), 351370. 
[15] 
Y. Lavallée, K.U. Hess, B. Cordonnier and D. B. Dingwell, NonNewtonian rheological law for highly crystalline dome lavas Geology 9 (2007), 843846. 
[16] 
S. V. Patankar, "Numerical Heat Transfer and Fluid Flow," Series in Computational Methods in Mechanics and Thermal Sciences, McGrawHill, 1980 
[17] 
H. Pinkerton and R. S. J. Sparks, Field measurements of the rheology of lava Nature 276 (1978), 383385. 
[18] 
H. Pinkerton and G. Norton, Rheological properties of basaltic lavas at subliquidus temperatures: Laboratory and field measurements on lavas from Mount Etna J. Volcanol. Geotherm. Res. 68 (1995), 307323. 
[19] 
H. Pinkerton and R. Stevenson, Methods of determining the rheological properties of magmas at subsolidus temperatures J. Volcanol. Geotherm. Res. 53 (1992), 4766. 
[20] 
H. R. Shaw, T. L. Wright, D. L. Peck and R. Okamura, The viscosity of basaltic magma: An analysis of field measurements in Makaopuhi lava lake Hawaii. Am. J. Sci. 266 (1968), 255264. 
[21] 
J. V. Smith, Textural evidence for dilatant (shear thickening) rheology of magma at high crystal concentrations J. Volcanol. Geotherm. Res. 99 (2000), 17. 
[22] 
I. Sonder, B. Zimanowski and R. Büttner, NonNewtonian viscosity of basaltic magma Geoph. Res. Lett. 33 (2006), L02303. 
[23] 
J. Spera, A. Borgia, J. Strimple and M. Feigenson, Rheology of melts and magmatic suspensions 1. design and calibration of concentric cylinder viscosimeter with application to rhyolitic magma J. Geophys. Res. 93 (1988), 27310. 
[24] 
D. J. Stein and F. J. Spera, Rheology and microstructure of magmatic emulsions: Theory and experiments J. Volcanol. Geotherm. Res. 49 (1992), 1571742. 
[25] 
S. Syrjälä, Finiteelement analysis of fully developed laminar flow of powerlaw nonNewtonian fluid in a rectangular duct Int. Commun. Heat Mass Transfer 22 (1995), 549557. 
[26] 
A. Tallarico and M. Dragoni, Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows Bull. Volcanol. 61 (1999), 4047. 
[27] 
A. Tallarico and M. Dragoni, A threedimensional Bingham model for channeled lava flows J. Geophys. Res. 105 (2000), 969980. 
[28] 
A. Tallarico, M. Dragoni and G. Zito, Evaluation of lava effusion rate and viscosity from other flow parameters J. Geophys. Res. 111 (2006). 
[29] 
H. C. Weed, F. J. Ryerson and A. J. Piwinskii, Rheological properties of Molten Kilauea Iki Basalt containing suspended crystals in "Mineral Matter and Ash in Coal" (eds. E.H. Zarantonello and Author 2) ACS Symposium Series, 301, 1986, 223233. 
show all references
References:
[1] 
N. Bagdassarov and H. Pinkerton, Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials J. Volcanol. Geotherm. Res. 132 (2004), 115136. 
[2] 
R. Champallier, M. Bystricky and L. Arbaret, Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 75 vol. of crystals Earth Planet. Sc. Lett. 267 (2008), 571583. 
[3] 
M. Capobianchi, Pressure drop predictions for laminar flows of extended modified power law fluids in rectangular ducts Int. J. Heat Mass Transfer, 51 (2008), 13931401. 
[4] 
M. Dragoni, M. Bonafede and E. Boschi, Downslope flow model of a Bingham liquid: Implications for lava flows J. Volcanol. Geotherm. Res. 30 (1986), 305325. 
[5] 
M. Dragoni and A. Tallarico, The effect of crystallization on the rheology and dynamics of lava flows J. Volcanol. Geotherm. Res. 59 (1994), 241252. 
[6] 
M. Dragoni, A. Piombo and A. Tallarico, A model for the formation of lava tubes by roofing over a channel J. Geophys. Res. 100 (1995), 84358447. 
[7] 
M. Dragoni, I. Borsari and A. Tallarico, A model for the shape of lava flow fronts J. Geophys. Res. 110 (2005), B09203. 
[8] 
C. Ferlito and J. Siewert, Lava Channel Formation during the 2001 Eruption on Mount Etna: Evidence for Mechanical Erosion Phys. Rev. Lett. 96 (2006), 028501. 
[9] 
J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics," SpringerVerlag, Berlin,, 2002., (). doi: 10.1007/9783642976513. 
[10] 
M. Filippucci, A. Tallarico and M. Dragoni, A three dimensional dynamical model for channeled lava flow with nonlinear rheology, J. Geophys. Res. 115, 115 (). 
[11] 
R. C. Gupta, On developing laminar nonNewtonian flow in pipes and channels Nonlin. Anal.: Real World Appl. 2 (2001), 171193. doi: 10.1016/S0362546X(00)001097. 
[12] 
A. J. L. Harris and S. K. Rowland, FLOWGO: A kinematic thermorheological model for lava flowing in a channel Bull. Volcanol. 63 (2001), 2044. 
[13] 
A. J. L. Harris, J. Bailey, S. Calvari and J. Dehn, Heat loss measured at a lava channel and its implications for downchannel cooling and rheology in "Kinematics and Dynamics of Lava Flows" (eds. M. Manga and G. Ventura) Geol. Soc. of Am. Special Paper, 2005, 396, 125146. 
[14] 
K. Hon, J. Kauahikaua, R. Denlinger and K. McKay, Emplacement and inflation of pahoehoe sheet flows: Observations and measurements of active flows an Kilauea Volcano, Hawaii Geol. Soc. Am. Bull. 106 (1994), 351370. 
[15] 
Y. Lavallée, K.U. Hess, B. Cordonnier and D. B. Dingwell, NonNewtonian rheological law for highly crystalline dome lavas Geology 9 (2007), 843846. 
[16] 
S. V. Patankar, "Numerical Heat Transfer and Fluid Flow," Series in Computational Methods in Mechanics and Thermal Sciences, McGrawHill, 1980 
[17] 
H. Pinkerton and R. S. J. Sparks, Field measurements of the rheology of lava Nature 276 (1978), 383385. 
[18] 
H. Pinkerton and G. Norton, Rheological properties of basaltic lavas at subliquidus temperatures: Laboratory and field measurements on lavas from Mount Etna J. Volcanol. Geotherm. Res. 68 (1995), 307323. 
[19] 
H. Pinkerton and R. Stevenson, Methods of determining the rheological properties of magmas at subsolidus temperatures J. Volcanol. Geotherm. Res. 53 (1992), 4766. 
[20] 
H. R. Shaw, T. L. Wright, D. L. Peck and R. Okamura, The viscosity of basaltic magma: An analysis of field measurements in Makaopuhi lava lake Hawaii. Am. J. Sci. 266 (1968), 255264. 
[21] 
J. V. Smith, Textural evidence for dilatant (shear thickening) rheology of magma at high crystal concentrations J. Volcanol. Geotherm. Res. 99 (2000), 17. 
[22] 
I. Sonder, B. Zimanowski and R. Büttner, NonNewtonian viscosity of basaltic magma Geoph. Res. Lett. 33 (2006), L02303. 
[23] 
J. Spera, A. Borgia, J. Strimple and M. Feigenson, Rheology of melts and magmatic suspensions 1. design and calibration of concentric cylinder viscosimeter with application to rhyolitic magma J. Geophys. Res. 93 (1988), 27310. 
[24] 
D. J. Stein and F. J. Spera, Rheology and microstructure of magmatic emulsions: Theory and experiments J. Volcanol. Geotherm. Res. 49 (1992), 1571742. 
[25] 
S. Syrjälä, Finiteelement analysis of fully developed laminar flow of powerlaw nonNewtonian fluid in a rectangular duct Int. Commun. Heat Mass Transfer 22 (1995), 549557. 
[26] 
A. Tallarico and M. Dragoni, Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows Bull. Volcanol. 61 (1999), 4047. 
[27] 
A. Tallarico and M. Dragoni, A threedimensional Bingham model for channeled lava flows J. Geophys. Res. 105 (2000), 969980. 
[28] 
A. Tallarico, M. Dragoni and G. Zito, Evaluation of lava effusion rate and viscosity from other flow parameters J. Geophys. Res. 111 (2006). 
[29] 
H. C. Weed, F. J. Ryerson and A. J. Piwinskii, Rheological properties of Molten Kilauea Iki Basalt containing suspended crystals in "Mineral Matter and Ash in Coal" (eds. E.H. Zarantonello and Author 2) ACS Symposium Series, 301, 1986, 223233. 
[1] 
Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian powerlaw nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete and Continuous Dynamical Systems  S, 2018, 11 (4) : 617630. doi: 10.3934/dcdss.2018036 
[2] 
José A. Carrillo, Yanghong Huang. Explicit equilibrium solutions for the aggregation equation with powerlaw potentials. Kinetic and Related Models, 2017, 10 (1) : 171192. doi: 10.3934/krm.2017007 
[3] 
Frank Jochmann. Powerlaw approximation of Bean's criticalstate model with displacement current. Conference Publications, 2011, 2011 (Special) : 747753. doi: 10.3934/proc.2011.2011.747 
[4] 
Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial and Management Optimization, 2007, 3 (3) : 553567. doi: 10.3934/jimo.2007.3.553 
[5] 
Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1 (4) : 689706. doi: 10.3934/nhm.2006.1.689 
[6] 
T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 12011222. doi: 10.3934/dcds.2003.9.1201 
[7] 
Stefan Berres, Ricardo RuizBaier, Hartmut Schwandt, Elmer M. Tory. An adaptive finitevolume method for a model of twophase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401423. doi: 10.3934/nhm.2011.6.401 
[8] 
Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multiinterference. Discrete and Continuous Dynamical Systems  S, 2020, 13 (6) : 17731790. doi: 10.3934/dcdss.2020104 
[9] 
Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete and Continuous Dynamical Systems  S, 2021, 14 (10) : 34013417. doi: 10.3934/dcdss.2020423 
[10] 
Alberto Bressan, Graziano Guerra. Shiftdifferentiabilitiy of the flow generated by a conservation law. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 3558. doi: 10.3934/dcds.1997.3.35 
[11] 
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255293. doi: 10.3934/nhm.2015.10.255 
[12] 
Tadahisa Funaki, Yueyuan Gao, Danielle Hilhorst. Convergence of a finite volume scheme for a stochastic conservation law involving a $Q$brownian motion. Discrete and Continuous Dynamical Systems  B, 2018, 23 (4) : 14591502. doi: 10.3934/dcdsb.2018159 
[13] 
Md. Golam Hafez, Sayed Allamah Iqbal, Asaduzzaman, Zakia Hammouch. Dynamical behaviors and oblique resonant nonlinear waves with dualpower law nonlinearity and conformable temporal evolution. Discrete and Continuous Dynamical Systems  S, 2021, 14 (7) : 22452260. doi: 10.3934/dcdss.2021058 
[14] 
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 922. doi: 10.3934/nhm.2013.8.9 
[15] 
Anibal T. Azevedo, Aurelio R. L. Oliveira, Marcos J. Rider, Secundino Soares. How to efficiently incorporate facts devices in optimal active power flow model. Journal of Industrial and Management Optimization, 2010, 6 (2) : 315331. doi: 10.3934/jimo.2010.6.315 
[16] 
Yongsheng Song. Stein’s method for the law of large numbers under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 199212. doi: 10.3934/puqr.2021010 
[17] 
Evgeny I. Veremey, Vladimir V. Eremeev. SISO HOptimal synthesis with initially specified structure of control law. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 121138. doi: 10.3934/naco.2017009 
[18] 
Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations and Control Theory, 2013, 2 (2) : iii. doi: 10.3934/eect.2013.2.2i 
[19] 
Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourthorder dispersion and dual power law nonlinearity. Discrete and Continuous Dynamical Systems  S, 2020, 13 (11) : 30833097. doi: 10.3934/dcdss.2020113 
[20] 
Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial and Management Optimization, 2014, 10 (4) : 10191030. doi: 10.3934/jimo.2014.10.1019 
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]