June  2013, 6(3): 711-722. doi: 10.3934/dcdss.2013.6.711

Convergence to a stationary state of solutions to inverse problems of parabolic type

1. 

Dipartimento di Matematica, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

Received  April 2010 Revised  October 2010 Published  December 2012

We illustrate some results of existence and uniqueness of solutions to inverse parabolic problems of partial recostruction of the forcing term. In particular, we look for conditions assuring that the solution and the unknown part of the forcing term converge to a stationary state.
Citation: Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711
References:
[1]

Y. Y. Belov, "Inverse Problems for Partial Differential Equations,", Inverse and Ill-posed Problems Series, (2002). doi: 10.1515/9783110944631. Google Scholar

[2]

D. Guidetti, On elliptic problems in Besov spaces,, Math. Nachr., 152 (1991), 247. doi: 10.1002/mana.19911520120. Google Scholar

[3]

D. Guidetti, On interpolation with boundary conditions,, Math. Z., 207 (1991), 439. doi: 10.1007/BF02571401. Google Scholar

[4]

D. Guidetti, Convergence to a stationary state for solutions to parabolic inverse problems of reconstruction of convolution kernels,, Diff. Int. Eq., 20 (2007), 961. Google Scholar

[5]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type,, Adv. Diff. Eq., 13 (2008), 399. Google Scholar

[6]

D. Guidetti, On linear elliptic and parabolic problems in Nikol'skij spaces,, in, (2011), 275. Google Scholar

[7]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type with nonhomogeneous boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 777. doi: 10.1017/S0308210510000788. Google Scholar

[8]

A. F. Güvenilir and V. K. Kalantarov, The asymptotic behavior of solutions to an inverse problem for differential operator equations,, Mathematical and Computer Modelling, 37 (2003), 907. doi: 10.1016/S0895-7177(03)00106-7. Google Scholar

[9]

V. Kamynin and E. Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations,, Russ. Jour. Math. Phys., 6 (1999), 394. Google Scholar

[10]

H. Triebel, "Theory of Functions Spaces,", Monogra. Math., (1983). Google Scholar

[11]

I. A. Vasin and V. L. Kamynin, On the asymptotic behavior of solutions to inverse problems for parabolic equations,, Siberian Math. Journ., 38 (1997), 647. doi: 10.1007/BF02674572. Google Scholar

[12]

I. A. Vasin and V. L. Kamynin, Asymptotic behavior of the solutions of inverse problems for parabolic equations with irregular coefficients,, Mat. Sbornik, 188 (1997), 49. doi: 10.1070/SM1997v188n03ABEH000210. Google Scholar

show all references

References:
[1]

Y. Y. Belov, "Inverse Problems for Partial Differential Equations,", Inverse and Ill-posed Problems Series, (2002). doi: 10.1515/9783110944631. Google Scholar

[2]

D. Guidetti, On elliptic problems in Besov spaces,, Math. Nachr., 152 (1991), 247. doi: 10.1002/mana.19911520120. Google Scholar

[3]

D. Guidetti, On interpolation with boundary conditions,, Math. Z., 207 (1991), 439. doi: 10.1007/BF02571401. Google Scholar

[4]

D. Guidetti, Convergence to a stationary state for solutions to parabolic inverse problems of reconstruction of convolution kernels,, Diff. Int. Eq., 20 (2007), 961. Google Scholar

[5]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type,, Adv. Diff. Eq., 13 (2008), 399. Google Scholar

[6]

D. Guidetti, On linear elliptic and parabolic problems in Nikol'skij spaces,, in, (2011), 275. Google Scholar

[7]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type with nonhomogeneous boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 777. doi: 10.1017/S0308210510000788. Google Scholar

[8]

A. F. Güvenilir and V. K. Kalantarov, The asymptotic behavior of solutions to an inverse problem for differential operator equations,, Mathematical and Computer Modelling, 37 (2003), 907. doi: 10.1016/S0895-7177(03)00106-7. Google Scholar

[9]

V. Kamynin and E. Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations,, Russ. Jour. Math. Phys., 6 (1999), 394. Google Scholar

[10]

H. Triebel, "Theory of Functions Spaces,", Monogra. Math., (1983). Google Scholar

[11]

I. A. Vasin and V. L. Kamynin, On the asymptotic behavior of solutions to inverse problems for parabolic equations,, Siberian Math. Journ., 38 (1997), 647. doi: 10.1007/BF02674572. Google Scholar

[12]

I. A. Vasin and V. L. Kamynin, Asymptotic behavior of the solutions of inverse problems for parabolic equations with irregular coefficients,, Mat. Sbornik, 188 (1997), 49. doi: 10.1070/SM1997v188n03ABEH000210. Google Scholar

[1]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[2]

Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891

[3]

Maria Assunta Pozio, Alberto Tesei. On the uniqueness of bounded solutions to singular parabolic problems. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 117-137. doi: 10.3934/dcds.2005.13.117

[4]

Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041

[5]

Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851

[6]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[7]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[8]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[9]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[10]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[11]

Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543

[12]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

[13]

Ilker Kocyigit, Ru-Yu Lai, Lingyun Qiu, Yang Yang, Ting Zhou. Applications of CGO solutions to coupled-physics inverse problems. Inverse Problems & Imaging, 2017, 11 (2) : 277-304. doi: 10.3934/ipi.2017014

[14]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[15]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[16]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[17]

Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641

[18]

Abdelkader Boucherif. Nonlocal problems for parabolic inclusions. Conference Publications, 2009, 2009 (Special) : 82-91. doi: 10.3934/proc.2009.2009.82

[19]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[20]

E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]