June  2013, 6(3): 711-722. doi: 10.3934/dcdss.2013.6.711

Convergence to a stationary state of solutions to inverse problems of parabolic type

1. 

Dipartimento di Matematica, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

Received  April 2010 Revised  October 2010 Published  December 2012

We illustrate some results of existence and uniqueness of solutions to inverse parabolic problems of partial recostruction of the forcing term. In particular, we look for conditions assuring that the solution and the unknown part of the forcing term converge to a stationary state.
Citation: Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711
References:
[1]

Y. Y. Belov, "Inverse Problems for Partial Differential Equations,", Inverse and Ill-posed Problems Series, (2002).  doi: 10.1515/9783110944631.  Google Scholar

[2]

D. Guidetti, On elliptic problems in Besov spaces,, Math. Nachr., 152 (1991), 247.  doi: 10.1002/mana.19911520120.  Google Scholar

[3]

D. Guidetti, On interpolation with boundary conditions,, Math. Z., 207 (1991), 439.  doi: 10.1007/BF02571401.  Google Scholar

[4]

D. Guidetti, Convergence to a stationary state for solutions to parabolic inverse problems of reconstruction of convolution kernels,, Diff. Int. Eq., 20 (2007), 961.   Google Scholar

[5]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type,, Adv. Diff. Eq., 13 (2008), 399.   Google Scholar

[6]

D. Guidetti, On linear elliptic and parabolic problems in Nikol'skij spaces,, in, (2011), 275.   Google Scholar

[7]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type with nonhomogeneous boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 777.  doi: 10.1017/S0308210510000788.  Google Scholar

[8]

A. F. Güvenilir and V. K. Kalantarov, The asymptotic behavior of solutions to an inverse problem for differential operator equations,, Mathematical and Computer Modelling, 37 (2003), 907.  doi: 10.1016/S0895-7177(03)00106-7.  Google Scholar

[9]

V. Kamynin and E. Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations,, Russ. Jour. Math. Phys., 6 (1999), 394.   Google Scholar

[10]

H. Triebel, "Theory of Functions Spaces,", Monogra. Math., (1983).   Google Scholar

[11]

I. A. Vasin and V. L. Kamynin, On the asymptotic behavior of solutions to inverse problems for parabolic equations,, Siberian Math. Journ., 38 (1997), 647.  doi: 10.1007/BF02674572.  Google Scholar

[12]

I. A. Vasin and V. L. Kamynin, Asymptotic behavior of the solutions of inverse problems for parabolic equations with irregular coefficients,, Mat. Sbornik, 188 (1997), 49.  doi: 10.1070/SM1997v188n03ABEH000210.  Google Scholar

show all references

References:
[1]

Y. Y. Belov, "Inverse Problems for Partial Differential Equations,", Inverse and Ill-posed Problems Series, (2002).  doi: 10.1515/9783110944631.  Google Scholar

[2]

D. Guidetti, On elliptic problems in Besov spaces,, Math. Nachr., 152 (1991), 247.  doi: 10.1002/mana.19911520120.  Google Scholar

[3]

D. Guidetti, On interpolation with boundary conditions,, Math. Z., 207 (1991), 439.  doi: 10.1007/BF02571401.  Google Scholar

[4]

D. Guidetti, Convergence to a stationary state for solutions to parabolic inverse problems of reconstruction of convolution kernels,, Diff. Int. Eq., 20 (2007), 961.   Google Scholar

[5]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type,, Adv. Diff. Eq., 13 (2008), 399.   Google Scholar

[6]

D. Guidetti, On linear elliptic and parabolic problems in Nikol'skij spaces,, in, (2011), 275.   Google Scholar

[7]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type with nonhomogeneous boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 777.  doi: 10.1017/S0308210510000788.  Google Scholar

[8]

A. F. Güvenilir and V. K. Kalantarov, The asymptotic behavior of solutions to an inverse problem for differential operator equations,, Mathematical and Computer Modelling, 37 (2003), 907.  doi: 10.1016/S0895-7177(03)00106-7.  Google Scholar

[9]

V. Kamynin and E. Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations,, Russ. Jour. Math. Phys., 6 (1999), 394.   Google Scholar

[10]

H. Triebel, "Theory of Functions Spaces,", Monogra. Math., (1983).   Google Scholar

[11]

I. A. Vasin and V. L. Kamynin, On the asymptotic behavior of solutions to inverse problems for parabolic equations,, Siberian Math. Journ., 38 (1997), 647.  doi: 10.1007/BF02674572.  Google Scholar

[12]

I. A. Vasin and V. L. Kamynin, Asymptotic behavior of the solutions of inverse problems for parabolic equations with irregular coefficients,, Mat. Sbornik, 188 (1997), 49.  doi: 10.1070/SM1997v188n03ABEH000210.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[6]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[9]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[10]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[11]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[12]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[13]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[16]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[17]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[20]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]