June  2013, 6(3): 711-722. doi: 10.3934/dcdss.2013.6.711

Convergence to a stationary state of solutions to inverse problems of parabolic type

1. 

Dipartimento di Matematica, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

Received  April 2010 Revised  October 2010 Published  December 2012

We illustrate some results of existence and uniqueness of solutions to inverse parabolic problems of partial recostruction of the forcing term. In particular, we look for conditions assuring that the solution and the unknown part of the forcing term converge to a stationary state.
Citation: Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711
References:
[1]

Y. Y. Belov, "Inverse Problems for Partial Differential Equations," Inverse and Ill-posed Problems Series, VSP, 2002. doi: 10.1515/9783110944631.

[2]

D. Guidetti, On elliptic problems in Besov spaces, Math. Nachr., 152 (1991), 247-275. doi: 10.1002/mana.19911520120.

[3]

D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), 439-460. doi: 10.1007/BF02571401.

[4]

D. Guidetti, Convergence to a stationary state for solutions to parabolic inverse problems of reconstruction of convolution kernels, Diff. Int. Eq., 20 (2007), 961-990.

[5]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type, Adv. Diff. Eq., 13 (2008), 399-426.

[6]

D. Guidetti, On linear elliptic and parabolic problems in Nikol'skij spaces, in "Parabolic Problems: the Herbert Amann Festschrift," 275-300, Birkhäuser (2011).

[7]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type with nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 777-817. doi: 10.1017/S0308210510000788.

[8]

A. F. Güvenilir and V. K. Kalantarov, The asymptotic behavior of solutions to an inverse problem for differential operator equations, Mathematical and Computer Modelling, 37 (2003), 907-914. doi: 10.1016/S0895-7177(03)00106-7.

[9]

V. Kamynin and E. Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations, Russ. Jour. Math. Phys., 6 (1999), 394-408.

[10]

H. Triebel, "Theory of Functions Spaces," Monogra. Math., Birkhäuser, 1983.

[11]

I. A. Vasin and V. L. Kamynin, On the asymptotic behavior of solutions to inverse problems for parabolic equations, Siberian Math. Journ., 38 (1997), 647-662. doi: 10.1007/BF02674572.

[12]

I. A. Vasin and V. L. Kamynin, Asymptotic behavior of the solutions of inverse problems for parabolic equations with irregular coefficients, Mat. Sbornik, 188 (1997), 49-64. doi: 10.1070/SM1997v188n03ABEH000210.

show all references

References:
[1]

Y. Y. Belov, "Inverse Problems for Partial Differential Equations," Inverse and Ill-posed Problems Series, VSP, 2002. doi: 10.1515/9783110944631.

[2]

D. Guidetti, On elliptic problems in Besov spaces, Math. Nachr., 152 (1991), 247-275. doi: 10.1002/mana.19911520120.

[3]

D. Guidetti, On interpolation with boundary conditions, Math. Z., 207 (1991), 439-460. doi: 10.1007/BF02571401.

[4]

D. Guidetti, Convergence to a stationary state for solutions to parabolic inverse problems of reconstruction of convolution kernels, Diff. Int. Eq., 20 (2007), 961-990.

[5]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type, Adv. Diff. Eq., 13 (2008), 399-426.

[6]

D. Guidetti, On linear elliptic and parabolic problems in Nikol'skij spaces, in "Parabolic Problems: the Herbert Amann Festschrift," 275-300, Birkhäuser (2011).

[7]

D. Guidetti, Asymptotic expansion of solutions to an inverse problem of parabolic type with nonhomogeneous boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 777-817. doi: 10.1017/S0308210510000788.

[8]

A. F. Güvenilir and V. K. Kalantarov, The asymptotic behavior of solutions to an inverse problem for differential operator equations, Mathematical and Computer Modelling, 37 (2003), 907-914. doi: 10.1016/S0895-7177(03)00106-7.

[9]

V. Kamynin and E. Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations, Russ. Jour. Math. Phys., 6 (1999), 394-408.

[10]

H. Triebel, "Theory of Functions Spaces," Monogra. Math., Birkhäuser, 1983.

[11]

I. A. Vasin and V. L. Kamynin, On the asymptotic behavior of solutions to inverse problems for parabolic equations, Siberian Math. Journ., 38 (1997), 647-662. doi: 10.1007/BF02674572.

[12]

I. A. Vasin and V. L. Kamynin, Asymptotic behavior of the solutions of inverse problems for parabolic equations with irregular coefficients, Mat. Sbornik, 188 (1997), 49-64. doi: 10.1070/SM1997v188n03ABEH000210.

[1]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[2]

Maria Assunta Pozio, Fabio Punzo, Alberto Tesei. Uniqueness and nonuniqueness of solutions to parabolic problems with singular coefficients. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 891-916. doi: 10.3934/dcds.2011.30.891

[3]

Maria Assunta Pozio, Alberto Tesei. On the uniqueness of bounded solutions to singular parabolic problems. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 117-137. doi: 10.3934/dcds.2005.13.117

[4]

Pavel Gurevich. Periodic solutions of parabolic problems with hysteresis on the boundary. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1041-1083. doi: 10.3934/dcds.2011.29.1041

[5]

Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851

[6]

Walter Allegretto, Liqun Cao, Yanping Lin. Multiscale asymptotic expansion for second order parabolic equations with rapidly oscillating coefficients. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 543-576. doi: 10.3934/dcds.2008.20.543

[7]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[8]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[9]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems and Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[10]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[11]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems and Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[12]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

[13]

Ilker Kocyigit, Ru-Yu Lai, Lingyun Qiu, Yang Yang, Ting Zhou. Applications of CGO solutions to coupled-physics inverse problems. Inverse Problems and Imaging, 2017, 11 (2) : 277-304. doi: 10.3934/ipi.2017014

[14]

Stanisław Migórski, Biao Zeng. Convergence of solutions to inverse problems for a class of variational-hemivariational inequalities. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4477-4498. doi: 10.3934/dcdsb.2018172

[15]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[16]

Maciej Smołka. Asymptotic behaviour of optimal solutions of control problems governed by inclusions. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 641-652. doi: 10.3934/dcds.1998.4.641

[17]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems and Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[18]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[19]

E. N. Dancer, Norimichi Hirano. Existence of stable and unstable periodic solutions for semilinear parabolic problems. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 207-216. doi: 10.3934/dcds.1997.3.207

[20]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]