-
Previous Article
Nonautonomous Kolmogorov equations in the whole space: A survey on recent results
- DCDS-S Home
- This Issue
-
Next Article
Convergence to a stationary state of solutions to inverse problems of parabolic type
Dynamic behaviour of a periodic competitive system with pulses
1. | Dipartimento di Matematica, Universitá degli studi di Bari, 70125 Bari, Italy |
References:
[1] |
S. Ahmad and I. M.Stamova, Asymptotic stability of an N-dimensional impulsive competitive system,, Nonlinear Anal. Real World Appl., 8 (2007), 654.
doi: 10.1016/j.nonrwa.2006.02.004. |
[2] |
S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system,, Nonlinear Anal., 62 (2005), 545.
doi: 10.1016/j.na.2005.03.069. |
[3] |
S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system,, Nonlinear Anal., 40 (2000), 37.
doi: 10.1016/S0362-546X(00)85003-8. |
[4] |
D. D. Bainov and P. S. Simeonov, "Systems with Impulse Effect,", Elles Horwood Limited, (1989).
|
[5] |
D. D. Bainov and P. S. Simeonov, "Impulsive Differential Equations: Periodic Solutions and Applications,", Longmann Scientific and Technical, (1993).
|
[6] |
B. Lisena, Stability and periodicity in competitive systems with impulses,, Mediterr. J. Math., 6 (2009), 291.
doi: 10.1007/s00009-009-0009-4. |
[7] |
B. Lisena, Coexistence and extinction in competitive systems with impulses,, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 17 (2010), 619.
|
[8] |
B. Lisena, Global stability in periodic competitive systems,, Nonlinear Anal. Real World Appl., 5 (2004), 613.
doi: 10.1016/j.nonrwa.2004.01.002. |
[9] |
B. Liu, Z. Teng and W. Liu, Dynamic behaviors of the periodic Lotka-Volterra competing systems with impulsive perturbations,, Chaos Solitons Fractals, 31 (2007), 356.
doi: 10.1016/j.chaos.2005.09.059. |
[10] |
I. Stamova, "Stability Analysis of Impulsive Functional Differential Equations,", Walter de Gruyter, (2009).
doi: 10.1515/9783110221824. |
[11] |
J. Zhen, M. Han and G. Li, The persistence in a Lotka-Volterra competition system with impulsive,, Chaos Solitons Fractals, 24 (2005), 1105.
doi: 10.1016/j.chaos.2004.09.065. |
show all references
References:
[1] |
S. Ahmad and I. M.Stamova, Asymptotic stability of an N-dimensional impulsive competitive system,, Nonlinear Anal. Real World Appl., 8 (2007), 654.
doi: 10.1016/j.nonrwa.2006.02.004. |
[2] |
S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system,, Nonlinear Anal., 62 (2005), 545.
doi: 10.1016/j.na.2005.03.069. |
[3] |
S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system,, Nonlinear Anal., 40 (2000), 37.
doi: 10.1016/S0362-546X(00)85003-8. |
[4] |
D. D. Bainov and P. S. Simeonov, "Systems with Impulse Effect,", Elles Horwood Limited, (1989).
|
[5] |
D. D. Bainov and P. S. Simeonov, "Impulsive Differential Equations: Periodic Solutions and Applications,", Longmann Scientific and Technical, (1993).
|
[6] |
B. Lisena, Stability and periodicity in competitive systems with impulses,, Mediterr. J. Math., 6 (2009), 291.
doi: 10.1007/s00009-009-0009-4. |
[7] |
B. Lisena, Coexistence and extinction in competitive systems with impulses,, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 17 (2010), 619.
|
[8] |
B. Lisena, Global stability in periodic competitive systems,, Nonlinear Anal. Real World Appl., 5 (2004), 613.
doi: 10.1016/j.nonrwa.2004.01.002. |
[9] |
B. Liu, Z. Teng and W. Liu, Dynamic behaviors of the periodic Lotka-Volterra competing systems with impulsive perturbations,, Chaos Solitons Fractals, 31 (2007), 356.
doi: 10.1016/j.chaos.2005.09.059. |
[10] |
I. Stamova, "Stability Analysis of Impulsive Functional Differential Equations,", Walter de Gruyter, (2009).
doi: 10.1515/9783110221824. |
[11] |
J. Zhen, M. Han and G. Li, The persistence in a Lotka-Volterra competition system with impulsive,, Chaos Solitons Fractals, 24 (2005), 1105.
doi: 10.1016/j.chaos.2004.09.065. |
[1] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[2] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[3] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[4] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[5] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[6] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[7] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[8] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[9] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[10] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[11] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[12] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[13] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[14] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[15] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[16] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[17] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[18] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[19] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[20] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]