June  2013, 6(3): 723-729. doi: 10.3934/dcdss.2013.6.723

Dynamic behaviour of a periodic competitive system with pulses

1. 

Dipartimento di Matematica, Universitá degli studi di Bari, 70125 Bari, Italy

Received  March 2010 Revised  December 2010 Published  December 2012

In this article we consider an $n$-dimensional competitive Lotka-Volterra system with periodic coefficients and impulses. We provide sufficient conditions for the existence and global attractivity of a positive periodic solution.
Citation: Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723
References:
[1]

S. Ahmad and I. M.Stamova, Asymptotic stability of an N-dimensional impulsive competitive system,, Nonlinear Anal. Real World Appl., 8 (2007), 654.  doi: 10.1016/j.nonrwa.2006.02.004.  Google Scholar

[2]

S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system,, Nonlinear Anal., 62 (2005), 545.  doi: 10.1016/j.na.2005.03.069.  Google Scholar

[3]

S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system,, Nonlinear Anal., 40 (2000), 37.  doi: 10.1016/S0362-546X(00)85003-8.  Google Scholar

[4]

D. D. Bainov and P. S. Simeonov, "Systems with Impulse Effect,", Elles Horwood Limited, (1989).   Google Scholar

[5]

D. D. Bainov and P. S. Simeonov, "Impulsive Differential Equations: Periodic Solutions and Applications,", Longmann Scientific and Technical, (1993).   Google Scholar

[6]

B. Lisena, Stability and periodicity in competitive systems with impulses,, Mediterr. J. Math., 6 (2009), 291.  doi: 10.1007/s00009-009-0009-4.  Google Scholar

[7]

B. Lisena, Coexistence and extinction in competitive systems with impulses,, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 17 (2010), 619.   Google Scholar

[8]

B. Lisena, Global stability in periodic competitive systems,, Nonlinear Anal. Real World Appl., 5 (2004), 613.  doi: 10.1016/j.nonrwa.2004.01.002.  Google Scholar

[9]

B. Liu, Z. Teng and W. Liu, Dynamic behaviors of the periodic Lotka-Volterra competing systems with impulsive perturbations,, Chaos Solitons Fractals, 31 (2007), 356.  doi: 10.1016/j.chaos.2005.09.059.  Google Scholar

[10]

I. Stamova, "Stability Analysis of Impulsive Functional Differential Equations,", Walter de Gruyter, (2009).  doi: 10.1515/9783110221824.  Google Scholar

[11]

J. Zhen, M. Han and G. Li, The persistence in a Lotka-Volterra competition system with impulsive,, Chaos Solitons Fractals, 24 (2005), 1105.  doi: 10.1016/j.chaos.2004.09.065.  Google Scholar

show all references

References:
[1]

S. Ahmad and I. M.Stamova, Asymptotic stability of an N-dimensional impulsive competitive system,, Nonlinear Anal. Real World Appl., 8 (2007), 654.  doi: 10.1016/j.nonrwa.2006.02.004.  Google Scholar

[2]

S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system,, Nonlinear Anal., 62 (2005), 545.  doi: 10.1016/j.na.2005.03.069.  Google Scholar

[3]

S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system,, Nonlinear Anal., 40 (2000), 37.  doi: 10.1016/S0362-546X(00)85003-8.  Google Scholar

[4]

D. D. Bainov and P. S. Simeonov, "Systems with Impulse Effect,", Elles Horwood Limited, (1989).   Google Scholar

[5]

D. D. Bainov and P. S. Simeonov, "Impulsive Differential Equations: Periodic Solutions and Applications,", Longmann Scientific and Technical, (1993).   Google Scholar

[6]

B. Lisena, Stability and periodicity in competitive systems with impulses,, Mediterr. J. Math., 6 (2009), 291.  doi: 10.1007/s00009-009-0009-4.  Google Scholar

[7]

B. Lisena, Coexistence and extinction in competitive systems with impulses,, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 17 (2010), 619.   Google Scholar

[8]

B. Lisena, Global stability in periodic competitive systems,, Nonlinear Anal. Real World Appl., 5 (2004), 613.  doi: 10.1016/j.nonrwa.2004.01.002.  Google Scholar

[9]

B. Liu, Z. Teng and W. Liu, Dynamic behaviors of the periodic Lotka-Volterra competing systems with impulsive perturbations,, Chaos Solitons Fractals, 31 (2007), 356.  doi: 10.1016/j.chaos.2005.09.059.  Google Scholar

[10]

I. Stamova, "Stability Analysis of Impulsive Functional Differential Equations,", Walter de Gruyter, (2009).  doi: 10.1515/9783110221824.  Google Scholar

[11]

J. Zhen, M. Han and G. Li, The persistence in a Lotka-Volterra competition system with impulsive,, Chaos Solitons Fractals, 24 (2005), 1105.  doi: 10.1016/j.chaos.2004.09.065.  Google Scholar

[1]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[2]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[3]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[8]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[9]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[10]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[14]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[15]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[16]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[17]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[19]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[20]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]