June  2013, 6(3): 723-729. doi: 10.3934/dcdss.2013.6.723

Dynamic behaviour of a periodic competitive system with pulses

1. 

Dipartimento di Matematica, Universitá degli studi di Bari, 70125 Bari, Italy

Received  March 2010 Revised  December 2010 Published  December 2012

In this article we consider an $n$-dimensional competitive Lotka-Volterra system with periodic coefficients and impulses. We provide sufficient conditions for the existence and global attractivity of a positive periodic solution.
Citation: Benedetta Lisena. Dynamic behaviour of a periodic competitive system with pulses. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 723-729. doi: 10.3934/dcdss.2013.6.723
References:
[1]

S. Ahmad and I. M.Stamova, Asymptotic stability of an N-dimensional impulsive competitive system,, Nonlinear Anal. Real World Appl., 8 (2007), 654. doi: 10.1016/j.nonrwa.2006.02.004. Google Scholar

[2]

S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system,, Nonlinear Anal., 62 (2005), 545. doi: 10.1016/j.na.2005.03.069. Google Scholar

[3]

S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system,, Nonlinear Anal., 40 (2000), 37. doi: 10.1016/S0362-546X(00)85003-8. Google Scholar

[4]

D. D. Bainov and P. S. Simeonov, "Systems with Impulse Effect,", Elles Horwood Limited, (1989). Google Scholar

[5]

D. D. Bainov and P. S. Simeonov, "Impulsive Differential Equations: Periodic Solutions and Applications,", Longmann Scientific and Technical, (1993). Google Scholar

[6]

B. Lisena, Stability and periodicity in competitive systems with impulses,, Mediterr. J. Math., 6 (2009), 291. doi: 10.1007/s00009-009-0009-4. Google Scholar

[7]

B. Lisena, Coexistence and extinction in competitive systems with impulses,, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 17 (2010), 619. Google Scholar

[8]

B. Lisena, Global stability in periodic competitive systems,, Nonlinear Anal. Real World Appl., 5 (2004), 613. doi: 10.1016/j.nonrwa.2004.01.002. Google Scholar

[9]

B. Liu, Z. Teng and W. Liu, Dynamic behaviors of the periodic Lotka-Volterra competing systems with impulsive perturbations,, Chaos Solitons Fractals, 31 (2007), 356. doi: 10.1016/j.chaos.2005.09.059. Google Scholar

[10]

I. Stamova, "Stability Analysis of Impulsive Functional Differential Equations,", Walter de Gruyter, (2009). doi: 10.1515/9783110221824. Google Scholar

[11]

J. Zhen, M. Han and G. Li, The persistence in a Lotka-Volterra competition system with impulsive,, Chaos Solitons Fractals, 24 (2005), 1105. doi: 10.1016/j.chaos.2004.09.065. Google Scholar

show all references

References:
[1]

S. Ahmad and I. M.Stamova, Asymptotic stability of an N-dimensional impulsive competitive system,, Nonlinear Anal. Real World Appl., 8 (2007), 654. doi: 10.1016/j.nonrwa.2006.02.004. Google Scholar

[2]

S. Ahmad and A. C. Lazer, Average growth and extinction in a competitive Lotka-Volterra system,, Nonlinear Anal., 62 (2005), 545. doi: 10.1016/j.na.2005.03.069. Google Scholar

[3]

S. Ahmad and A. C. Lazer, Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system,, Nonlinear Anal., 40 (2000), 37. doi: 10.1016/S0362-546X(00)85003-8. Google Scholar

[4]

D. D. Bainov and P. S. Simeonov, "Systems with Impulse Effect,", Elles Horwood Limited, (1989). Google Scholar

[5]

D. D. Bainov and P. S. Simeonov, "Impulsive Differential Equations: Periodic Solutions and Applications,", Longmann Scientific and Technical, (1993). Google Scholar

[6]

B. Lisena, Stability and periodicity in competitive systems with impulses,, Mediterr. J. Math., 6 (2009), 291. doi: 10.1007/s00009-009-0009-4. Google Scholar

[7]

B. Lisena, Coexistence and extinction in competitive systems with impulses,, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 17 (2010), 619. Google Scholar

[8]

B. Lisena, Global stability in periodic competitive systems,, Nonlinear Anal. Real World Appl., 5 (2004), 613. doi: 10.1016/j.nonrwa.2004.01.002. Google Scholar

[9]

B. Liu, Z. Teng and W. Liu, Dynamic behaviors of the periodic Lotka-Volterra competing systems with impulsive perturbations,, Chaos Solitons Fractals, 31 (2007), 356. doi: 10.1016/j.chaos.2005.09.059. Google Scholar

[10]

I. Stamova, "Stability Analysis of Impulsive Functional Differential Equations,", Walter de Gruyter, (2009). doi: 10.1515/9783110221824. Google Scholar

[11]

J. Zhen, M. Han and G. Li, The persistence in a Lotka-Volterra competition system with impulsive,, Chaos Solitons Fractals, 24 (2005), 1105. doi: 10.1016/j.chaos.2004.09.065. Google Scholar

[1]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

[2]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[3]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[4]

Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771

[5]

Zhaohai Ma, Rong Yuan, Yang Wang, Xin Wu. Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2069-2092. doi: 10.3934/cpaa.2019093

[6]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[7]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[8]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[9]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[10]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[11]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[12]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[13]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[14]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[15]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[16]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[17]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

[18]

Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709

[19]

Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103

[20]

Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure & Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]