June  2013, 6(3): 761-770. doi: 10.3934/dcdss.2013.6.761

Non-hamiltonian Schrödinger systems

1. 

Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Matematica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma

Received  April 2010 Revised  November 2010 Published  December 2012

In this paper we study local and global in time existence for the Cauchy Problem of some semilinear Schrödinger systems. In particular we do not assume that the nonlinear term guarantees conservation of charge or energy.
Citation: Sandra Lucente, Eugenio Montefusco. Non-hamiltonian Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 761-770. doi: 10.3934/dcdss.2013.6.761
References:
[1]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).

[2]

D. G. de Figueiredo and Y. Jianfu, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211. doi: 10.1016/S0362-546X(97)00548-8.

[3]

D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of solutions and formation of singularities for a class of hyperbolic systems,, in, 32 (1997), 117.

[4]

M. Escobedo and M. A. Herrero, A uniqueness result for a semilinear reaction-diffusion system,, Proc. Amer. Math. Soc., 112 (1991), 175. doi: 10.2307/2048495.

[5]

L. Fanelli, S. Lucente and E. Montefusco, Semilinear Hamiltonian Schrödinger systems,, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 401. doi: 10.1504/IJDSDE.2011.042938.

[6]

L. Fanelli and E. Montefusco, On the blow-up threshold for weakly coupled nonlinear Schrödinger equations,, J. Phys. A, 40 (2007), 14139. doi: 10.1088/1751-8113/40/47/007.

[7]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schr\"odinger equation with critical power,, Duke Math. J., 69 (1993), 427. doi: 10.1215/S0012-7094-93-06919-0.

[8]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf R^\mathbb N$,, Differ. Integral Equ., 9 (1996), 465.

[9]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Differ. Integral Equ., 9 (1996), 635.

[10]

T. Tao, Nonlinear dispersive equations: Local and global analysis,, CBMS Regional Conference Series in Mathematics, 106 (2006).

show all references

References:
[1]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).

[2]

D. G. de Figueiredo and Y. Jianfu, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211. doi: 10.1016/S0362-546X(97)00548-8.

[3]

D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of solutions and formation of singularities for a class of hyperbolic systems,, in, 32 (1997), 117.

[4]

M. Escobedo and M. A. Herrero, A uniqueness result for a semilinear reaction-diffusion system,, Proc. Amer. Math. Soc., 112 (1991), 175. doi: 10.2307/2048495.

[5]

L. Fanelli, S. Lucente and E. Montefusco, Semilinear Hamiltonian Schrödinger systems,, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 401. doi: 10.1504/IJDSDE.2011.042938.

[6]

L. Fanelli and E. Montefusco, On the blow-up threshold for weakly coupled nonlinear Schrödinger equations,, J. Phys. A, 40 (2007), 14139. doi: 10.1088/1751-8113/40/47/007.

[7]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schr\"odinger equation with critical power,, Duke Math. J., 69 (1993), 427. doi: 10.1215/S0012-7094-93-06919-0.

[8]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf R^\mathbb N$,, Differ. Integral Equ., 9 (1996), 465.

[9]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Differ. Integral Equ., 9 (1996), 635.

[10]

T. Tao, Nonlinear dispersive equations: Local and global analysis,, CBMS Regional Conference Series in Mathematics, 106 (2006).

[1]

Tadahiro Oh. Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1563-1580. doi: 10.3934/cpaa.2015.14.1563

[2]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[3]

Victor Wasiolek. Uniform global existence and convergence of Euler-Maxwell systems with small parameters. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2007-2021. doi: 10.3934/cpaa.2016025

[4]

Rémi Carles. Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 385-398. doi: 10.3934/dcds.2005.13.385

[5]

Zaihui Gan, Boling Guo, Jian Zhang. Blowup and global existence of the nonlinear Schrödinger equations with multiple potentials. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1303-1312. doi: 10.3934/cpaa.2009.8.1303

[6]

Masahoto Ohta, Grozdena Todorova. Remarks on global existence and blowup for damped nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1313-1325. doi: 10.3934/dcds.2009.23.1313

[7]

Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071

[8]

Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983

[9]

Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119

[10]

J. Colliander, Justin Holmer, Monica Visan, Xiaoyi Zhang. Global existence and scattering for rough solutions to generalized nonlinear Schrödinger equations on $R$. Communications on Pure & Applied Analysis, 2008, 7 (3) : 467-489. doi: 10.3934/cpaa.2008.7.467

[11]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[12]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[13]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[14]

Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75

[15]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[16]

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure & Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867

[17]

Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061

[18]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[19]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

[20]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]