June  2013, 6(3): 761-770. doi: 10.3934/dcdss.2013.6.761

Non-hamiltonian Schrödinger systems

1. 

Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy

2. 

Dipartimento di Matematica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma

Received  April 2010 Revised  November 2010 Published  December 2012

In this paper we study local and global in time existence for the Cauchy Problem of some semilinear Schrödinger systems. In particular we do not assume that the nonlinear term guarantees conservation of charge or energy.
Citation: Sandra Lucente, Eugenio Montefusco. Non-hamiltonian Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 761-770. doi: 10.3934/dcdss.2013.6.761
References:
[1]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[2]

D. G. de Figueiredo and Y. Jianfu, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211.  doi: 10.1016/S0362-546X(97)00548-8.  Google Scholar

[3]

D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of solutions and formation of singularities for a class of hyperbolic systems,, in, 32 (1997), 117.   Google Scholar

[4]

M. Escobedo and M. A. Herrero, A uniqueness result for a semilinear reaction-diffusion system,, Proc. Amer. Math. Soc., 112 (1991), 175.  doi: 10.2307/2048495.  Google Scholar

[5]

L. Fanelli, S. Lucente and E. Montefusco, Semilinear Hamiltonian Schrödinger systems,, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 401.  doi: 10.1504/IJDSDE.2011.042938.  Google Scholar

[6]

L. Fanelli and E. Montefusco, On the blow-up threshold for weakly coupled nonlinear Schrödinger equations,, J. Phys. A, 40 (2007), 14139.  doi: 10.1088/1751-8113/40/47/007.  Google Scholar

[7]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schr\"odinger equation with critical power,, Duke Math. J., 69 (1993), 427.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[8]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf R^\mathbb N$,, Differ. Integral Equ., 9 (1996), 465.   Google Scholar

[9]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Differ. Integral Equ., 9 (1996), 635.   Google Scholar

[10]

T. Tao, Nonlinear dispersive equations: Local and global analysis,, CBMS Regional Conference Series in Mathematics, 106 (2006).   Google Scholar

show all references

References:
[1]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[2]

D. G. de Figueiredo and Y. Jianfu, Decay, symmetry and existence of solutions of semilinear elliptic systems,, Nonlinear Anal., 33 (1998), 211.  doi: 10.1016/S0362-546X(97)00548-8.  Google Scholar

[3]

D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of solutions and formation of singularities for a class of hyperbolic systems,, in, 32 (1997), 117.   Google Scholar

[4]

M. Escobedo and M. A. Herrero, A uniqueness result for a semilinear reaction-diffusion system,, Proc. Amer. Math. Soc., 112 (1991), 175.  doi: 10.2307/2048495.  Google Scholar

[5]

L. Fanelli, S. Lucente and E. Montefusco, Semilinear Hamiltonian Schrödinger systems,, Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 401.  doi: 10.1504/IJDSDE.2011.042938.  Google Scholar

[6]

L. Fanelli and E. Montefusco, On the blow-up threshold for weakly coupled nonlinear Schrödinger equations,, J. Phys. A, 40 (2007), 14139.  doi: 10.1088/1751-8113/40/47/007.  Google Scholar

[7]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schr\"odinger equation with critical power,, Duke Math. J., 69 (1993), 427.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[8]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $\mathbf R^\mathbb N$,, Differ. Integral Equ., 9 (1996), 465.   Google Scholar

[9]

J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden system,, Differ. Integral Equ., 9 (1996), 635.   Google Scholar

[10]

T. Tao, Nonlinear dispersive equations: Local and global analysis,, CBMS Regional Conference Series in Mathematics, 106 (2006).   Google Scholar

[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[7]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[8]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[11]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[12]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[13]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[14]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[15]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[16]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]