\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dispersive waves with multiple tunnel effect on a star-shaped network

Abstract Related Papers Cited by
  • We consider the Klein-Gordon equation on a star-shaped network composed of $n$ half-axes connected at their origins. We add a potential which is constant but different on each branch. The corresponding spatial operator is self-adjoint and we state explicit expressions for its resolvent and its resolution of the identity in terms of generalized eigenfunctions. This leads to a generalized Fourier type inversion formula in terms of an expansion in generalized eigenfunctions. This paper is a survey of a longer article, nevertheless the proof of the central formula is indicated.
    Mathematics Subject Classification: Primary 34B45; Secondary 42A38, 47A10, 47A60, 47A70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Ali Mehmeti, Spectral theory and $L^{\infty}$-time decay estimates for Klein-Gordon equations on two half axes with transmission: The tunnel effect, Math. Methods Appl. Sci., 17 (1994), 697-752.doi: 10.1002/mma.1670170904.

    [2]

    F. Ali Mehmeti, "Transient Tunnel Effect and Sommerfeld Problem: Waves in Semi-Infinite Structures," Mathematical Research, 91, Akademie Verlag, Berlin, 1996.

    [3]

    F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Expansions in generalized eigenfunctions of the weighted Laplacian on star-shaped networks, in "Functional Analysis and Evolution Equations: The Günter Lumer Volume" (eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below), Birkhäuser, Basel, (2007), 1-16.doi: 10.1007/978-3-7643-7794-6_1.

    [4]

    F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ., 12 (2012), 513-545 arXiv:1012.3068v1.doi: 10.1007/s00028-012-0143-5.

    [5]

    F. Ali Mehmeti and V. Régnier, Splitting of energy of dispersive waves in a star-shaped network, Z. Angew. Math. Mech., 83 (2003), 105-118.doi: 10.1002/zamm.200310010.

    [6]

    F. Ali Mehmeti and V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets, Math. Methods Appl. Sci., 27 (2004), 1145-1195.doi: 10.1002/mma.484.

    [7]

    F. Ali Mehmeti and V. Régnier, Global existence and causality for a transmission problem with a repulsive nonlinearity, Nonlinear Anal., 69 (2008), 408-424.doi: 10.1016/j.na.2007.05.028.

    [8]

    J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks Results Math., 47 (2005), 199-225.

    [9]

    S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions, J. Differential Equations, 247 (2009), 1229-1248.doi: 10.1016/j.jde.2009.04.013.

    [10]

    Y. Daikh, "Temps de Passage de Paquets D'ondes de Basses Fréquences ou Limités en Bandes de Fréquences par une Barrière de Potentiel," Thèse de Doctorat, Université de Valenciennes, France, 2004.

    [11]

    J. M. Deutch and F. E. Low, Barrier penetration and superluminal velocity, Annals of Physics, 228 (1993), 184-202.doi: 10.1006/aphy.1993.1092.

    [12]

    N. Dunford and J. T. Schwartz, "Linear Operators II," Wiley Interscience, New York, 1963.

    [13]

    A. Enders and G. Nimtz, On superluminal barrier traversal, J. Phys. I France, 2 (1992), 1693-1698.

    [14]

    A. Haibel and G. Nimtz, Universal relationship of time and frequency in photonic tunnelling, Ann. Physik (Leipzig), 10 (2001), 707-712.

    [15]

    V. Kostrykin and R. SchraderThe inverse scattering problem for metric graphs and the travelling salesman problem, preprint, arXiv:math-ph/0603010.

    [16]

    M. Pozar, "Microwave Engineering," Addison-Wesley, New York, 1990.

    [17]

    J. Weidmann, "Spectral Theory of Ordinary Differential Operators," Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, 1987.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(107) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return