Citation: |
[1] |
F. Ali Mehmeti, Spectral theory and $L^{\infty}$-time decay estimates for Klein-Gordon equations on two half axes with transmission: The tunnel effect, Math. Methods Appl. Sci., 17 (1994), 697-752.doi: 10.1002/mma.1670170904. |
[2] |
F. Ali Mehmeti, "Transient Tunnel Effect and Sommerfeld Problem: Waves in Semi-Infinite Structures," Mathematical Research, 91, Akademie Verlag, Berlin, 1996. |
[3] |
F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Expansions in generalized eigenfunctions of the weighted Laplacian on star-shaped networks, in "Functional Analysis and Evolution Equations: The Günter Lumer Volume" (eds. H. Amann, W. Arendt, M. Hieber, F. Neubrander, S. Nicaise and J. von Below), Birkhäuser, Basel, (2007), 1-16.doi: 10.1007/978-3-7643-7794-6_1. |
[4] |
F. Ali Mehmeti, R. Haller-Dintelmann and V. Régnier, Multiple tunnel effect for dispersive waves on a star-shaped network: an explicit formula for the spectral representation, J. Evol. Equ., 12 (2012), 513-545 arXiv:1012.3068v1.doi: 10.1007/s00028-012-0143-5. |
[5] |
F. Ali Mehmeti and V. Régnier, Splitting of energy of dispersive waves in a star-shaped network, Z. Angew. Math. Mech., 83 (2003), 105-118.doi: 10.1002/zamm.200310010. |
[6] |
F. Ali Mehmeti and V. Régnier, Delayed reflection of the energy flow at a potential step for dispersive wave packets, Math. Methods Appl. Sci., 27 (2004), 1145-1195.doi: 10.1002/mma.484. |
[7] |
F. Ali Mehmeti and V. Régnier, Global existence and causality for a transmission problem with a repulsive nonlinearity, Nonlinear Anal., 69 (2008), 408-424.doi: 10.1016/j.na.2007.05.028. |
[8] |
J. von Below and J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks Results Math., 47 (2005), 199-225. |
[9] |
S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions, J. Differential Equations, 247 (2009), 1229-1248.doi: 10.1016/j.jde.2009.04.013. |
[10] |
Y. Daikh, "Temps de Passage de Paquets D'ondes de Basses Fréquences ou Limités en Bandes de Fréquences par une Barrière de Potentiel," Thèse de Doctorat, Université de Valenciennes, France, 2004. |
[11] |
J. M. Deutch and F. E. Low, Barrier penetration and superluminal velocity, Annals of Physics, 228 (1993), 184-202.doi: 10.1006/aphy.1993.1092. |
[12] |
N. Dunford and J. T. Schwartz, "Linear Operators II," Wiley Interscience, New York, 1963. |
[13] |
A. Enders and G. Nimtz, On superluminal barrier traversal, J. Phys. I France, 2 (1992), 1693-1698. |
[14] |
A. Haibel and G. Nimtz, Universal relationship of time and frequency in photonic tunnelling, Ann. Physik (Leipzig), 10 (2001), 707-712. |
[15] |
V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the travelling salesman problem, preprint, arXiv:math-ph/0603010. |
[16] |
M. Pozar, "Microwave Engineering," Addison-Wesley, New York, 1990. |
[17] |
J. Weidmann, "Spectral Theory of Ordinary Differential Operators," Lecture Notes in Mathematics, 1258, Springer-Verlag, Berlin, 1987. |