June  2013, 6(3): 803-824. doi: 10.3934/dcdss.2013.6.803

On backward stochastic differential equations in infinite dimensions

1. 

University of Antwerp, Department of Mathematics and Computer Science, Middelheimlaan 1, 2020 Antwerp, Belgium

Received  January 2010 Revised  November 2010 Published  December 2012

In the present paper we present a result in which probabilistic methods are used to prove existence and uniqueness of a backward partial differential equation in a Hilbert space. This equation is of the form (7) in Theorem 1.1 below. In particular semi-linear conditions on the coefficient $f$ are imposed.
Citation: Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803
References:
[1]

V. Bally, E. Pardoux and L. Stoica, Backward stochastic differential equations associated to a symmetric Markov process,, Potential Anal., 22 (2005), 17.   Google Scholar

[2]

Felix E. Browder, Nonlinear elliptic boundary value problems,, Bull. Amer. Math. Soc., 69 (1963), 862.   Google Scholar

[3]

Felix E. Browder, Existence and perturbation theorems for nonlinear maximal monotone operators in Banach spaces,, Bull. Amer. Math. Soc., 73 (1967), 322.   Google Scholar

[4]

Fulvia Confortola, Dissipative backward stochastic differential equations in infinite dimensions,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 155.  doi: 10.1142/S0219025706002287.  Google Scholar

[5]

Fulvia Confortola, Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity,, Stochastic Process. Appl., 117 (2007), 613.  doi: 10.1016/j.spa.2006.09.008.  Google Scholar

[6]

N. El Karoui and M. C. Quenez, Imperfect markets and backward stochastic differential equations,, Numerical methods in finance, (1997), 181.   Google Scholar

[7]

Marco Fuhrman and Ying Hu, Backward stochastic differential equations in infinite dimensions with continuous driver and applications,, Appl. Math. Optim., 56 (2007), 265.  doi: 10.1007/s00245-007-0897-2.  Google Scholar

[8]

Giuseppina Guatteri, On a class of forward-backward stochastic differential systems in infinite dimensions,, J. Appl. Math. Stoch. Anal., (2007).  doi: 10.1155/2007/42640.  Google Scholar

[9]

Ying Hu and Shi Ge Peng, Adapted solution of a backward semilinear stochastic evolution equation,, Stochastic Anal. Appl., 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[10]

N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes,", 2 ed., 24 (1998).   Google Scholar

[11]

Antoine Lejay, BSDE driven by Dirichlet process and semi-linear parabolic PDE. Application to homogenization,, Stochastic Process. Appl., 97 (2002), 1.  doi: 10.1016/S0304-4149(01)00124-7.  Google Scholar

[12]

George J. Minty, On a "Monotonicity'' method for the solution of non-linear equations in Banach spaces,, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038.   Google Scholar

[13]

É. Pardoux, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order,, Stochastic analysis and related topics, 42 (1998), 79.   Google Scholar

[14]

Étienne Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation,, Systems Control Lett., 14 (1990), 55.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[15]

Étienne Pardoux and Aurel Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities,, (English summary) Stochastic Process. Appl., 76 (1998), 191.  doi: 10.1016/S0304-4149(98)00030-1.  Google Scholar

[16]

Étienne Pardoux and Aurel Răşcanu, Backward stochastic variational inequalities,, Stochastics Stochastics Rep., 67 (1999), 159.   Google Scholar

[17]

Étienne Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems,, Probab. Theory Related Fields, 110 (1998), 535.  doi: 10.1007/s004400050158.  Google Scholar

[18]

Jan Prüss, Maximal regularity for evolution equations in $L_p$-spaces,, Conf. Semin. Mat. Univ. Bari, (2002), 1.   Google Scholar

[19]

R. Tyrrell Rockafellar, Local boundedness of nonlinear, monotone operators,, Michigan Math. J., 16 (1969), 397.   Google Scholar

[20]

R. Tyrrell Rockafellar, "Convex Analysis,", Princeton Landmarks in Mathematics, (1997).   Google Scholar

[21]

Elias M. Stein and Rami Shakarchi, "Real Analysis,", Princeton Lectures in Analysis, (2005).   Google Scholar

[22]

J. A. Van Casteren, Feynman-Kac formulas, backward stochastic differential equations and Markov processes,, Functional Analysis and Evolution Equations, (2008), 83.  doi: 10.1007/978-3-7643-7794-6_6.  Google Scholar

[23]

J. A.Van Casteren, Viscosity solutions, backward stochastic differential equations and Mar\-kov processes,, IMTA, 1 (2010), 273.   Google Scholar

[24]

J. A. Van Casteren, "Markov Processes, Feller Semigroups and Evolution Equations,'', Series on Concrete and Applicable Mathematics 12, 12 (2010).   Google Scholar

show all references

References:
[1]

V. Bally, E. Pardoux and L. Stoica, Backward stochastic differential equations associated to a symmetric Markov process,, Potential Anal., 22 (2005), 17.   Google Scholar

[2]

Felix E. Browder, Nonlinear elliptic boundary value problems,, Bull. Amer. Math. Soc., 69 (1963), 862.   Google Scholar

[3]

Felix E. Browder, Existence and perturbation theorems for nonlinear maximal monotone operators in Banach spaces,, Bull. Amer. Math. Soc., 73 (1967), 322.   Google Scholar

[4]

Fulvia Confortola, Dissipative backward stochastic differential equations in infinite dimensions,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 155.  doi: 10.1142/S0219025706002287.  Google Scholar

[5]

Fulvia Confortola, Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity,, Stochastic Process. Appl., 117 (2007), 613.  doi: 10.1016/j.spa.2006.09.008.  Google Scholar

[6]

N. El Karoui and M. C. Quenez, Imperfect markets and backward stochastic differential equations,, Numerical methods in finance, (1997), 181.   Google Scholar

[7]

Marco Fuhrman and Ying Hu, Backward stochastic differential equations in infinite dimensions with continuous driver and applications,, Appl. Math. Optim., 56 (2007), 265.  doi: 10.1007/s00245-007-0897-2.  Google Scholar

[8]

Giuseppina Guatteri, On a class of forward-backward stochastic differential systems in infinite dimensions,, J. Appl. Math. Stoch. Anal., (2007).  doi: 10.1155/2007/42640.  Google Scholar

[9]

Ying Hu and Shi Ge Peng, Adapted solution of a backward semilinear stochastic evolution equation,, Stochastic Anal. Appl., 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[10]

N. Ikeda and S. Watanabe, "Stochastic Differential Equations and Diffusion Processes,", 2 ed., 24 (1998).   Google Scholar

[11]

Antoine Lejay, BSDE driven by Dirichlet process and semi-linear parabolic PDE. Application to homogenization,, Stochastic Process. Appl., 97 (2002), 1.  doi: 10.1016/S0304-4149(01)00124-7.  Google Scholar

[12]

George J. Minty, On a "Monotonicity'' method for the solution of non-linear equations in Banach spaces,, Proc. Nat. Acad. Sci. U.S.A., 50 (1963), 1038.   Google Scholar

[13]

É. Pardoux, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order,, Stochastic analysis and related topics, 42 (1998), 79.   Google Scholar

[14]

Étienne Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation,, Systems Control Lett., 14 (1990), 55.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[15]

Étienne Pardoux and Aurel Răşcanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities,, (English summary) Stochastic Process. Appl., 76 (1998), 191.  doi: 10.1016/S0304-4149(98)00030-1.  Google Scholar

[16]

Étienne Pardoux and Aurel Răşcanu, Backward stochastic variational inequalities,, Stochastics Stochastics Rep., 67 (1999), 159.   Google Scholar

[17]

Étienne Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems,, Probab. Theory Related Fields, 110 (1998), 535.  doi: 10.1007/s004400050158.  Google Scholar

[18]

Jan Prüss, Maximal regularity for evolution equations in $L_p$-spaces,, Conf. Semin. Mat. Univ. Bari, (2002), 1.   Google Scholar

[19]

R. Tyrrell Rockafellar, Local boundedness of nonlinear, monotone operators,, Michigan Math. J., 16 (1969), 397.   Google Scholar

[20]

R. Tyrrell Rockafellar, "Convex Analysis,", Princeton Landmarks in Mathematics, (1997).   Google Scholar

[21]

Elias M. Stein and Rami Shakarchi, "Real Analysis,", Princeton Lectures in Analysis, (2005).   Google Scholar

[22]

J. A. Van Casteren, Feynman-Kac formulas, backward stochastic differential equations and Markov processes,, Functional Analysis and Evolution Equations, (2008), 83.  doi: 10.1007/978-3-7643-7794-6_6.  Google Scholar

[23]

J. A.Van Casteren, Viscosity solutions, backward stochastic differential equations and Mar\-kov processes,, IMTA, 1 (2010), 273.   Google Scholar

[24]

J. A. Van Casteren, "Markov Processes, Feller Semigroups and Evolution Equations,'', Series on Concrete and Applicable Mathematics 12, 12 (2010).   Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[12]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[17]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]