April  2013, 6(4): 891-908. doi: 10.3934/dcdss.2013.6.891

Intertwining semiclassical solutions to a Schrödinger-Newton system

1. 

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari

2. 

via Orabona 4, 70125 Bari

3. 

Instituto de Matemticas, Universidad Nacional Autnoma de Mxico

4. 

Circuito Exterior, C.U., 04510 Mxico D.F.

5. 

Dipartimento di Matematica ed Applicazioni

6. 

Universit di Milano-Bicocca

7. 

edificio U5, via R. Cozzi 53, I-20125 Milano

Received  October 2011 Revised  February 2012 Published  December 2012

We study the problem\[\begin{cases}\left( -\varepsilon\mathrm{i}\nabla+A(x)\right) ^{2}u+V(x)u=\varepsilon^{-2}\left( \frac{1}{|x|}\ast|u|^{2}\right) u,\\u\in L^{2}(\mathbb{R}^{3},\mathbb{C}),    \varepsilon\nablau+\mathrm{i}Au\in L^{2}(\mathbb{R}^{3},\mathbb{C}^{3}),\end{cases}\]where $A\colon\mathbb{R}^{3}\rightarrow\mathbb{R}^{3}$ is an exterior magneticpotential, $V\colon\mathbb{R}^{3}\rightarrow\mathbb{R}$ is an exteriorelectric potential, and $\varepsilon$ is a small positive number. If $A=0$ and$\varepsilon=\hbar$ is Planck's constant this problem is equivalent to theSchr?dinger-Newton equations proposed by Penrose in [23] todescribe his view that quantum state reduction occurs due to somegravitational effect. We assume that $A$ and $V$ are compatible with theaction of a group $G$ of linear isometries of $\mathbb{R}^{3}$. Then, for anygiven homomorphism $\tau:G\rightarrow\mathbb{S}^{1}$ into the unit complexnumbers, we show that there is a combined effect of the symmetries and thepotential $V$ on the number of semiclassical solutions $u:\mathbb{R}^{3}\rightarrow\mathbb{C}$ which satisfy $u(gx)=\tau(g)u(x)$ for all $g\in G$,$x\in\mathbb{R}^{3}$. We also study the concentration behavior of thesesolutions as $\varepsilon 0.$
Citation: Silvia Cingolani, Mnica Clapp, Simone Secchi. Intertwining semiclassical solutions to a Schrödinger-Newton system. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 891-908. doi: 10.3934/dcdss.2013.6.891
References:
[1]

L. Abatangelo and S. Terracini, Solutions to nonlinear Schrödinger equations with singular electromagnetic potential and critical exponent,, J. Fixed Point Theory Appl., 10 (2011), 147. doi: 10.1007/s11784-011-0053-0. Google Scholar

[2]

N. Ackermann, On a periodic Schrödinger equation with nonlocar superlinear part,, Math. Z., 248 (2004), 423. doi: 10.1007/s00209-004-0663-y. Google Scholar

[3]

S. Cingolani and M. Clapp, Intertwining semiclassical bound states to a nonlinear magnetic equation,, Nonlinearity, 22 (2009), 2309. doi: 10.1088/0951-7715/22/9/013. Google Scholar

[4]

S. Cingolani and M. Clapp, Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory,, Commun. Pure Appl. Anal., 9 (2010), 1263. doi: 10.3934/cpaa.2010.9.1263. Google Scholar

[5]

S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation,, Z. Angew. Math. Phys. 63 (2012), 63 (2012), 233. doi: 10.1007/s00033-011-0166-8. Google Scholar

[6]

S. Cingolani, S. Secchi and M. Squassina, Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities,, Proc. Roy. Soc. Edinburgh, 140 A (2010), 973. doi: 10.1017/S0308210509000584. Google Scholar

[7]

M. Clapp and D. Puppe, Critical point theory with symmetries,, J. Reine Angew. Math., 418 (1991), 1. doi: 10.1007/BF02566437. Google Scholar

[8]

M. Clapp and A. Szulkin, Multiple solutions to a nonlinear Schrödinger equation with Aharonov-Bohm magnetic potential,, Nonlinear Differ. Equ. Appl. (NoDea), 17 (2010), 229. doi: 10.1007/s00030-009-0051-8. Google Scholar

[9]

T. tom Dieck, "Transformation Groups,", Walter de Gruyter, (1987). doi: 10.1515/9783110858372.312. Google Scholar

[10]

J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation,, in, (2004), 2003. Google Scholar

[11]

J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation,, Comm. Math. Phys., 225 (2002), 223. doi: 10.1007/s002200100579. Google Scholar

[12]

R. Harrison, I. Moroz and K. P. Tod, A numerical study of the Schrödinger-Newton equations,, Nonlinearity, 16 (2003), 101. doi: 10.1088/0951-7715/16/1/307. Google Scholar

[13]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Stud. Appl. Math., 57 (1977), 93. Google Scholar

[14]

E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Math. 14, 14 (1997). Google Scholar

[15]

P.-L. Lions, The concentration-compacteness principle in the calculus of variations. The locally compact case,, Ann. Inst. Henry Poincaré, 1 (1984), 109. Google Scholar

[16]

P.-L. Lions, The Choquard equation and related questions,, Nonlinear Anal. T.M.A., 4 (1980), 1063. doi: 10.1016/0362-546X(80)90016-4. Google Scholar

[17]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rational Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3. Google Scholar

[18]

I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations,, Topology of the Universe Conference (Cleveland, 15 (1998), 2733. doi: 10.1088/0264-9381/15/9/019. Google Scholar

[19]

I. M. Moroz and P. Tod, An analytical approach to the Schrödinger-Newton equations,, Nonlinearity, 12 (1999), 201. doi: 10.1088/0951-7715/12/2/002. Google Scholar

[20]

M. Nolasco, Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential,, Commun. Pure Appl. Anal., 9 (2010), 1411. doi: 10.3934/cpaa.2010.9.1411. Google Scholar

[21]

R. Palais, The principle of symmetric criticallity,, Comm. Math. Phys., 69 (1979), 19. Google Scholar

[22]

R. Penrose, On gravity's role in quantum state reduction,, Gen. Rel. Grav., 28 (1996), 581. doi: 10.1007/BF02105068. Google Scholar

[23]

R. Penrose, Quantum computation, entanglement and state reduction,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927. doi: 10.1098/rsta.1998.0256. Google Scholar

[24]

R. Penrose, "The Road to Reality. A Complete Guide to the Laws of the Universe,", Alfred A. Knopf Inc., (2005). Google Scholar

[25]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential,, Nonlinear Analysis, 72 (2010), 3842. doi: 10.1016/j.na.2010.01.021. Google Scholar

[26]

P. Tod, The ground state energy of the Schrödinger-Newton equation,, Physics Letters A, 280 (2001), 173. doi: 10.1016/S0375-9601(01)00059-7. Google Scholar

[27]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3060169. Google Scholar

[28]

M. Willem, "Minimax Theorems,", PNLDE 24, 24 (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

show all references

References:
[1]

L. Abatangelo and S. Terracini, Solutions to nonlinear Schrödinger equations with singular electromagnetic potential and critical exponent,, J. Fixed Point Theory Appl., 10 (2011), 147. doi: 10.1007/s11784-011-0053-0. Google Scholar

[2]

N. Ackermann, On a periodic Schrödinger equation with nonlocar superlinear part,, Math. Z., 248 (2004), 423. doi: 10.1007/s00209-004-0663-y. Google Scholar

[3]

S. Cingolani and M. Clapp, Intertwining semiclassical bound states to a nonlinear magnetic equation,, Nonlinearity, 22 (2009), 2309. doi: 10.1088/0951-7715/22/9/013. Google Scholar

[4]

S. Cingolani and M. Clapp, Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory,, Commun. Pure Appl. Anal., 9 (2010), 1263. doi: 10.3934/cpaa.2010.9.1263. Google Scholar

[5]

S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation,, Z. Angew. Math. Phys. 63 (2012), 63 (2012), 233. doi: 10.1007/s00033-011-0166-8. Google Scholar

[6]

S. Cingolani, S. Secchi and M. Squassina, Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities,, Proc. Roy. Soc. Edinburgh, 140 A (2010), 973. doi: 10.1017/S0308210509000584. Google Scholar

[7]

M. Clapp and D. Puppe, Critical point theory with symmetries,, J. Reine Angew. Math., 418 (1991), 1. doi: 10.1007/BF02566437. Google Scholar

[8]

M. Clapp and A. Szulkin, Multiple solutions to a nonlinear Schrödinger equation with Aharonov-Bohm magnetic potential,, Nonlinear Differ. Equ. Appl. (NoDea), 17 (2010), 229. doi: 10.1007/s00030-009-0051-8. Google Scholar

[9]

T. tom Dieck, "Transformation Groups,", Walter de Gruyter, (1987). doi: 10.1515/9783110858372.312. Google Scholar

[10]

J. Fröhlich and E. Lenzmann, Mean-field limit of quantum Bose gases and nonlinear Hartree equation,, in, (2004), 2003. Google Scholar

[11]

J. Fröhlich, T.-P. Tsai and H.-T. Yau, On the point-particle (Newtonian) limit of the non-linear Hartree equation,, Comm. Math. Phys., 225 (2002), 223. doi: 10.1007/s002200100579. Google Scholar

[12]

R. Harrison, I. Moroz and K. P. Tod, A numerical study of the Schrödinger-Newton equations,, Nonlinearity, 16 (2003), 101. doi: 10.1088/0951-7715/16/1/307. Google Scholar

[13]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation,, Stud. Appl. Math., 57 (1977), 93. Google Scholar

[14]

E. H. Lieb and M. Loss, "Analysis,", Graduate Studies in Math. 14, 14 (1997). Google Scholar

[15]

P.-L. Lions, The concentration-compacteness principle in the calculus of variations. The locally compact case,, Ann. Inst. Henry Poincaré, 1 (1984), 109. Google Scholar

[16]

P.-L. Lions, The Choquard equation and related questions,, Nonlinear Anal. T.M.A., 4 (1980), 1063. doi: 10.1016/0362-546X(80)90016-4. Google Scholar

[17]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation,, Arch. Rational Mech. Anal., 195 (2010), 455. doi: 10.1007/s00205-008-0208-3. Google Scholar

[18]

I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations,, Topology of the Universe Conference (Cleveland, 15 (1998), 2733. doi: 10.1088/0264-9381/15/9/019. Google Scholar

[19]

I. M. Moroz and P. Tod, An analytical approach to the Schrödinger-Newton equations,, Nonlinearity, 12 (1999), 201. doi: 10.1088/0951-7715/12/2/002. Google Scholar

[20]

M. Nolasco, Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential,, Commun. Pure Appl. Anal., 9 (2010), 1411. doi: 10.3934/cpaa.2010.9.1411. Google Scholar

[21]

R. Palais, The principle of symmetric criticallity,, Comm. Math. Phys., 69 (1979), 19. Google Scholar

[22]

R. Penrose, On gravity's role in quantum state reduction,, Gen. Rel. Grav., 28 (1996), 581. doi: 10.1007/BF02105068. Google Scholar

[23]

R. Penrose, Quantum computation, entanglement and state reduction,, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927. doi: 10.1098/rsta.1998.0256. Google Scholar

[24]

R. Penrose, "The Road to Reality. A Complete Guide to the Laws of the Universe,", Alfred A. Knopf Inc., (2005). Google Scholar

[25]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential,, Nonlinear Analysis, 72 (2010), 3842. doi: 10.1016/j.na.2010.01.021. Google Scholar

[26]

P. Tod, The ground state energy of the Schrödinger-Newton equation,, Physics Letters A, 280 (2001), 173. doi: 10.1016/S0375-9601(01)00059-7. Google Scholar

[27]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equation,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3060169. Google Scholar

[28]

M. Willem, "Minimax Theorems,", PNLDE 24, 24 (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[1]

Kei Nakamura, Tohru Ozawa. Finite charge solutions to cubic Schrödinger equations with a nonlocal nonlinearity in one space dimension. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 789-801. doi: 10.3934/dcds.2013.33.789

[2]

Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087

[3]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[4]

Weiming Liu, Chunhua Wang. Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7081-7115. doi: 10.3934/dcds.2016109

[5]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[6]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[7]

Zuji Guo. Nodal solutions for nonlinear Schrödinger equations with decaying potential. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1125-1138. doi: 10.3934/cpaa.2016.15.1125

[8]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[9]

Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure & Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771

[10]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[11]

Thomas Bartsch, Zhongwei Tang. Multibump solutions of nonlinear Schrödinger equations with steep potential well and indefinite potential. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 7-26. doi: 10.3934/dcds.2013.33.7

[12]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[13]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[14]

Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033

[15]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[16]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[17]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[18]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[19]

Haidong Liu, Zhaoli Liu. Positive solutions of a nonlinear Schrödinger system with nonconstant potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1431-1464. doi: 10.3934/dcds.2016.36.1431

[20]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]