April  2013, 6(4): 909-923. doi: 10.3934/dcdss.2013.6.909

Fatigue accumulation in an oscillating plate

1. 

Dipartimento di Matematica, Universit degli Studi di Milano

2. 

via Saldini 50

3. 

20133 Milano.

4. 

Mathematical Institute of the Silesian University

5. 

Na Rybn?ku 1

6. 

746 01 Opava

7. 

Institute of Mathematics, Czech Academy of Sciences

8. 

?itn 25

9. 

11567 Praha 1

Received  October 2011 Revised  February 2012 Published  December 2012

A thermodynamic model for fatigue accumulation in an oscillating elastoplastic Kirchhoffplate based on the hypothesis that the fatigue accumulation rate is proportional tothe dissipation rate, is derived for the case that both the elastic and the plasticmaterial characteristics change with increasing fatigue. We prove the existence ofa unique solution in the whole time interval before a singularity (material failure) occursunder the simplifying hypothesis that the temperature history is a priori given.
Citation: Michela Eleuteri, Jana Kopfov, Pavel Krej?. Fatigue accumulation in an oscillating plate. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 909-923. doi: 10.3934/dcdss.2013.6.909
References:
[1]

M. Brokate, C. Carstensen and J. Valdman, A quasi-static boundary value problem in multi-surface elastoplasticity. I. Analysis,, Math. Methods Appl. Sci., 27 (2004), 1697.  doi: 10.1002/mma.524.  Google Scholar

[2]

M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity,, Euro. J. Mech. A/Solids, 15 (1996), 705.   Google Scholar

[3]

M. Brokate and A. M. Khludnev, Existence of solutions in the Prandtl-Reuss theory of elastoplastic plates,, Adv. Math. Sci Appl., 10 (2000), 399.   Google Scholar

[4]

M. Brokate, P. Krejčí and H. Schnabel, On uniqueness in evolution quasivariational inequalities,, J. of Convex Analysis, 11 (2004), 111.   Google Scholar

[5]

P. Drábek, P. Krejčí and P. Takáč, "Nonlinear Differential Equations,", Research Notes in Mathematics, 404 (1999).   Google Scholar

[6]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B: Condensed Matter, 407 (2012), 1415.   Google Scholar

[7]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Submitted., ().   Google Scholar

[8]

G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, Arch. Ration. Mech. Anal., 180 (2006), 183.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[9]

R. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. Angew. Math. Mech., 88 (2008), 199.  doi: 10.1002/zamm.200700111.  Google Scholar

[10]

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media,, J. Engng. Mater. Technol., 99 (1977), 2.   Google Scholar

[11]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies,, (Russian) Izv. Akad. Nauk SSSR, 9 (1944), 583.   Google Scholar

[12]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-61302-9.  Google Scholar

[13]

M. Kuczma, P. Litewka, J. Rakowski and J. R. Whiteman, A variational inequality approach to an elastoplastic plate-foundation system,, Foundations of Civil and Environmental Engineering, 5 (2004), 31.   Google Scholar

[14]

M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Gamma convergence,, WIAS Preprint No. 1583, (2010).   Google Scholar

[15]

M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via Gamma convergence,, WIAS Preprint No. 1636, (2011).   Google Scholar

[16]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials,", Cambridge University Press, (1990).   Google Scholar

[17]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA, 11 (2004), 151.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[18]

O. Millet, A. Cimetiere and A. Hamdouni, An asymptotic elastic-plastic plate model for moderate displacements and strong strain hardening,, Eur. J. Mech. A Solids, 22 (2003), 369.  doi: 10.1016/S0997-7538(03)00044-5.  Google Scholar

[19]

D. Percivale, Perfectly plastic plates: A variational definition,, J. Reine Angew. Math., 411 (1990), 39.  doi: 10.1515/crll.1990.411.39.  Google Scholar

[20]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. Ang. Math. Mech., 8 (1928), 85.   Google Scholar

show all references

References:
[1]

M. Brokate, C. Carstensen and J. Valdman, A quasi-static boundary value problem in multi-surface elastoplasticity. I. Analysis,, Math. Methods Appl. Sci., 27 (2004), 1697.  doi: 10.1002/mma.524.  Google Scholar

[2]

M. Brokate, K. Dreßler and P. Krejčí, Rainflow counting and energy dissipation for hysteresis models in elastoplasticity,, Euro. J. Mech. A/Solids, 15 (1996), 705.   Google Scholar

[3]

M. Brokate and A. M. Khludnev, Existence of solutions in the Prandtl-Reuss theory of elastoplastic plates,, Adv. Math. Sci Appl., 10 (2000), 399.   Google Scholar

[4]

M. Brokate, P. Krejčí and H. Schnabel, On uniqueness in evolution quasivariational inequalities,, J. of Convex Analysis, 11 (2004), 111.   Google Scholar

[5]

P. Drábek, P. Krejčí and P. Takáč, "Nonlinear Differential Equations,", Research Notes in Mathematics, 404 (1999).   Google Scholar

[6]

M. Eleuteri, J. Kopfová and P. Krejčí, A thermodynamic model for material fatigue under cyclic loading,, Physica B: Condensed Matter, 407 (2012), 1415.   Google Scholar

[7]

M. Eleuteri, J. Kopfová and P. Krejčí, Non-isothermal cyclic fatigue in an oscillating elastoplastic beam,, Submitted., ().   Google Scholar

[8]

G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence,, Arch. Ration. Mech. Anal., 180 (2006), 183.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[9]

R. Guenther, P. Krejčí and J. Sprekels, Small strain oscillations of an elastoplastic Kirchhoff plate,, Z. Angew. Math. Mech., 88 (2008), 199.  doi: 10.1002/zamm.200700111.  Google Scholar

[10]

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I - yield criteria and flow rules for porous ductile media,, J. Engng. Mater. Technol., 99 (1977), 2.   Google Scholar

[11]

A. Yu. Ishlinskii, Some applications of statistical methods to describing deformations of bodies,, (Russian) Izv. Akad. Nauk SSSR, 9 (1944), 583.   Google Scholar

[12]

M. A. Krasnosel'skii and A. V. Pokrovskii, "Systems with Hysteresis,", Springer-Verlag, (1989).  doi: 10.1007/978-3-642-61302-9.  Google Scholar

[13]

M. Kuczma, P. Litewka, J. Rakowski and J. R. Whiteman, A variational inequality approach to an elastoplastic plate-foundation system,, Foundations of Civil and Environmental Engineering, 5 (2004), 31.   Google Scholar

[14]

M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via Gamma convergence,, WIAS Preprint No. 1583, (2010).   Google Scholar

[15]

M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via Gamma convergence,, WIAS Preprint No. 1636, (2011).   Google Scholar

[16]

J. Lemaitre and J.-L. Chaboche, "Mechanics of Solid Materials,", Cambridge University Press, (1990).   Google Scholar

[17]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA, 11 (2004), 151.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[18]

O. Millet, A. Cimetiere and A. Hamdouni, An asymptotic elastic-plastic plate model for moderate displacements and strong strain hardening,, Eur. J. Mech. A Solids, 22 (2003), 369.  doi: 10.1016/S0997-7538(03)00044-5.  Google Scholar

[19]

D. Percivale, Perfectly plastic plates: A variational definition,, J. Reine Angew. Math., 411 (1990), 39.  doi: 10.1515/crll.1990.411.39.  Google Scholar

[20]

L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, Z. Ang. Math. Mech., 8 (1928), 85.   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]