August  2013, 6(4): 909-923. doi: 10.3934/dcdss.2013.6.909

Fatigue accumulation in an oscillating plate

1. 

Dipartimento di Matematica, Universit degli Studi di Milano

2. 

via Saldini 50

3. 

20133 Milano.

4. 

Mathematical Institute of the Silesian University

5. 

Na Rybn?ku 1

6. 

746 01 Opava

7. 

Institute of Mathematics, Czech Academy of Sciences

8. 

?itn 25

9. 

11567 Praha 1

Received  October 2011 Revised  February 2012 Published  December 2012

A thermodynamic model for fatigue accumulation in an oscillating elastoplastic Kirchhoffplate based on the hypothesis that the fatigue accumulation rate is proportional tothe dissipation rate, is derived for the case that both the elastic and the plasticmaterial characteristics change with increasing fatigue. We prove the existence ofa unique solution in the whole time interval before a singularity (material failure) occursunder the simplifying hypothesis that the temperature history is a priori given.
Citation: Michela Eleuteri, Jana Kopfov, Pavel Krej?. Fatigue accumulation in an oscillating plate. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 909-923. doi: 10.3934/dcdss.2013.6.909
References:
[1]

Math. Methods Appl. Sci., 27 (2004), 1697-1710. doi: 10.1002/mma.524.

[2]

Euro. J. Mech. A/Solids, 15 (1996), 705-735.

[3]

Adv. Math. Sci Appl., 10 (2000), 399-415.

[4]

J. of Convex Analysis, 11 (2004), 111-130.

[5]

Research Notes in Mathematics, 404, Chapman & Hall/CRC, Boca Raton, FL, 1999.

[6]

Physica B: Condensed Matter, 407, no. 9 (2012), 1415-1416.

[7]

Submitted.

[8]

Arch. Ration. Mech. Anal., 180 (2006), 183-236. doi: 10.1007/s00205-005-0400-7.

[9]

Z. Angew. Math. Mech., 88 (2008), 199-217. doi: 10.1002/zamm.200700111.

[10]

J. Engng. Mater. Technol., 99 (1977), 2-15.

[11]

(Russian) Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 9 (1944), 583-590.

[12]

Springer-Verlag, Berlin - Heidelberg, 1989. doi: 10.1007/978-3-642-61302-9.

[13]

Foundations of Civil and Environmental Engineering, 5 (2004), 31-48.

[14]

WIAS Preprint No. 1583, (2010).

[15]

WIAS Preprint No. 1636, (2011).

[16]

Cambridge University Press, 1990.

[17]

NoDEA, Nonlinear Differ. Equ. Appl., 11(2004), 151-189. doi: 10.1007/s00030-003-1052-7.

[18]

Eur. J. Mech. A Solids, 22 (2003), 369-384. doi: 10.1016/S0997-7538(03)00044-5.

[19]

J. Reine Angew. Math., 411 (1990), 39-50. doi: 10.1515/crll.1990.411.39.

[20]

Z. Ang. Math. Mech., 8 (1928), 85-106.

show all references

References:
[1]

Math. Methods Appl. Sci., 27 (2004), 1697-1710. doi: 10.1002/mma.524.

[2]

Euro. J. Mech. A/Solids, 15 (1996), 705-735.

[3]

Adv. Math. Sci Appl., 10 (2000), 399-415.

[4]

J. of Convex Analysis, 11 (2004), 111-130.

[5]

Research Notes in Mathematics, 404, Chapman & Hall/CRC, Boca Raton, FL, 1999.

[6]

Physica B: Condensed Matter, 407, no. 9 (2012), 1415-1416.

[7]

Submitted.

[8]

Arch. Ration. Mech. Anal., 180 (2006), 183-236. doi: 10.1007/s00205-005-0400-7.

[9]

Z. Angew. Math. Mech., 88 (2008), 199-217. doi: 10.1002/zamm.200700111.

[10]

J. Engng. Mater. Technol., 99 (1977), 2-15.

[11]

(Russian) Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 9 (1944), 583-590.

[12]

Springer-Verlag, Berlin - Heidelberg, 1989. doi: 10.1007/978-3-642-61302-9.

[13]

Foundations of Civil and Environmental Engineering, 5 (2004), 31-48.

[14]

WIAS Preprint No. 1583, (2010).

[15]

WIAS Preprint No. 1636, (2011).

[16]

Cambridge University Press, 1990.

[17]

NoDEA, Nonlinear Differ. Equ. Appl., 11(2004), 151-189. doi: 10.1007/s00030-003-1052-7.

[18]

Eur. J. Mech. A Solids, 22 (2003), 369-384. doi: 10.1016/S0997-7538(03)00044-5.

[19]

J. Reine Angew. Math., 411 (1990), 39-50. doi: 10.1515/crll.1990.411.39.

[20]

Z. Ang. Math. Mech., 8 (1928), 85-106.

[1]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[2]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2091-2109. doi: 10.3934/dcdsb.2014.19.2091

[3]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[4]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[5]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. A new phase field model for material fatigue in an oscillating elastoplastic beam. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2465-2495. doi: 10.3934/dcds.2015.35.2465

[6]

Pavel Krejčí, Jürgen Sprekels. Clamped elastic-ideally plastic beams and Prandtl-Ishlinskii hysteresis operators. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 283-292. doi: 10.3934/dcdss.2008.1.283

[7]

Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Non-isothermal cyclic fatigue in an oscillating elastoplastic beam. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2973-2996. doi: 10.3934/cpaa.2013.12.2973

[8]

Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014

[9]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[10]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[11]

Simone Göttlich, Sebastian Kühn, Jan Peter Ohst, Stefan Ruzika, Markus Thiemann. Evacuation dynamics influenced by spreading hazardous material. Networks and Heterogeneous Media, 2011, 6 (3) : 443-464. doi: 10.3934/nhm.2011.6.443

[12]

Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022001

[13]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[14]

Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic and Related Models, 2020, 13 (6) : 1163-1174. doi: 10.3934/krm.2020041

[15]

Shun Li, Peng-Fei Yao. Modeling of a nonlinear plate. Evolution Equations and Control Theory, 2012, 1 (1) : 155-169. doi: 10.3934/eect.2012.1.155

[16]

Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations and Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557

[17]

Rejeb Hadiji, Ken Shirakawa. Asymptotic analysis for micromagnetics of thin films governed by indefinite material coefficients. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1345-1361. doi: 10.3934/cpaa.2010.9.1345

[18]

Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017

[19]

Agnes Lamacz, Ben Schweizer. Effective acoustic properties of a meta-material consisting of small Helmholtz resonators. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 815-835. doi: 10.3934/dcdss.2017041

[20]

Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 339-349. doi: 10.3934/dcdss.2010.3.339

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]